The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

John M. Hitchcock: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. John M. Hitchcock
    Small Spans in Scaled Dimension. [Citation Graph (0, 0)][DBLP]
    IEEE Conference on Computational Complexity, 2004, pp:104-112 [Conf]
  2. John M. Hitchcock, Aduri Pavan, N. V. Vinodchandran
    Partial Bi-immunity and NP-Completeness. [Citation Graph (0, 0)][DBLP]
    IEEE Conference on Computational Complexity, 2004, pp:198-203 [Conf]
  3. John M. Hitchcock, N. V. Vinodchandran
    Dimension, Entropy Rates, and Compression. [Citation Graph (0, 0)][DBLP]
    IEEE Conference on Computational Complexity, 2004, pp:174-183 [Conf]
  4. John M. Hitchcock, Jack H. Lutz, Sebastiaan Terwijn
    The Arithmetical Complexity of Dimension and Randomness. [Citation Graph (0, 0)][DBLP]
    CSL, 2003, pp:241-254 [Conf]
  5. John M. Hitchcock, Aduri Pavan
    Hardness Hypotheses, Derandomization, and Circuit Complexity. [Citation Graph (0, 0)][DBLP]
    FSTTCS, 2004, pp:336-347 [Conf]
  6. Lance Fortnow, John M. Hitchcock, Aduri Pavan, N. V. Vinodchandran, Fengming Wang
    Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws. [Citation Graph (0, 0)][DBLP]
    ICALP (1), 2006, pp:335-345 [Conf]
  7. John M. Hitchcock
    Correspondence Principles for Effective Dimensions. [Citation Graph (0, 0)][DBLP]
    ICALP, 2002, pp:561-571 [Conf]
  8. John M. Hitchcock, Jack H. Lutz
    Why Computational Complexity Requires Stricter Martingales. [Citation Graph (0, 0)][DBLP]
    ICALP, 2002, pp:549-560 [Conf]
  9. John M. Hitchcock, Jack H. Lutz, Elvira Mayordomo
    Scaled Dimension and Nonuniform Complexity. [Citation Graph (0, 0)][DBLP]
    ICALP, 2003, pp:278-290 [Conf]
  10. John M. Hitchcock, Aduri Pavan
    Comparing Reductions to NP-Complete Sets. [Citation Graph (0, 0)][DBLP]
    ICALP (1), 2006, pp:465-476 [Conf]
  11. John M. Hitchcock, María López-Valdés, Elvira Mayordomo
    Scaled Dimension and the Kolmogorov Complexity of Turing-Hard Sets. [Citation Graph (0, 0)][DBLP]
    MFCS, 2004, pp:476-487 [Conf]
  12. Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, Elvira Mayordomo
    Effective Strong Dimension in Algorithmic Information and Computational Complexity. [Citation Graph (0, 0)][DBLP]
    STACS, 2004, pp:632-643 [Conf]
  13. John M. Hitchcock
    Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets. [Citation Graph (0, 0)][DBLP]
    STACS, 2006, pp:408-419 [Conf]
  14. John M. Hitchcock
    Gales Suffice for Constructive Dimension [Citation Graph (0, 0)][DBLP]
    CoRR, 2002, v:0, n:, pp:- [Journal]
  15. Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, Elvira Mayordomo
    Effective Strong Dimension, Algorithmic Information, and Computational Complexity [Citation Graph (0, 0)][DBLP]
    CoRR, 2002, v:0, n:, pp:- [Journal]
  16. John M. Hitchcock
    Small Spans in Scaled Dimension [Citation Graph (0, 0)][DBLP]
    CoRR, 2003, v:0, n:, pp:- [Journal]
  17. John M. Hitchcock, Jack H. Lutz, Sebastiaan Terwijn
    The Arithmetical Complexity of Dimension and Randomness [Citation Graph (0, 0)][DBLP]
    CoRR, 2004, v:0, n:, pp:- [Journal]
  18. John M. Hitchcock
    The Size of SPP [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2003, v:, n:063, pp:- [Journal]
  19. John M. Hitchcock, Aduri Pavan, Pramodchandran N. Variyam
    Partial Bi-Immunity and NP-Completeness [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:025, pp:- [Journal]
  20. John M. Hitchcock, María López-Valdés, Elvira Mayordomo
    Scaled dimension and the Kolmogorov complexity of Turing hard sets [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:029, pp:- [Journal]
  21. John M. Hitchcock
    Hausdorff Dimension and Oracle Constructions [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:072, pp:- [Journal]
  22. John M. Hitchcock, Jack H. Lutz, Sebastiaan Terwijn
    The Arithmetical Complexity of Dimension and Randomness [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:079, pp:- [Journal]
  23. Lance Fortnow, John M. Hitchcock, Aduri Pavan, N. V. Vinodchandran, Fengming Wang
    Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2005, v:, n:105, pp:- [Journal]
  24. John M. Hitchcock
    Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2005, v:, n:161, pp:- [Journal]
  25. John M. Hitchcock
    Gales suffice for constructive dimension. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2003, v:86, n:1, pp:9-12 [Journal]
  26. John M. Hitchcock, Aduri Pavan
    Resource-bounded strong dimension versus resource-bounded category. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2005, v:95, n:3, pp:377-381 [Journal]
  27. John M. Hitchcock, Jack H. Lutz, Elvira Mayordomo
    Scaled dimension and nonuniform complexity. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 2004, v:69, n:2, pp:97-122 [Journal]
  28. John M. Hitchcock, N. V. Vinodchandran
    Dimension, entropy rates, and compression. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 2006, v:72, n:4, pp:760-782 [Journal]
  29. John M. Hitchcock
    Correspondence Principles for Effective Dimensions. [Citation Graph (0, 0)][DBLP]
    Theory Comput. Syst., 2005, v:38, n:5, pp:559-571 [Journal]
  30. John M. Hitchcock, Jack H. Lutz
    Why Computational Complexity Requires Stricter Martingales. [Citation Graph (0, 0)][DBLP]
    Theory Comput. Syst., 2006, v:39, n:2, pp:277-296 [Journal]
  31. John M. Hitchcock
    Small Spans in Scaled Dimension. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 2004, v:34, n:1, pp:170-194 [Journal]
  32. John M. Hitchcock
    Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 2007, v:36, n:6, pp:1696-1708 [Journal]
  33. Chris Bourke, John M. Hitchcock, N. V. Vinodchandran
    Entropy rates and finite-state dimension. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2005, v:349, n:3, pp:392-406 [Journal]
  34. John M. Hitchcock
    MAX3SAT is exponentially hard to approximate if NP has positive dimension. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2002, v:289, n:1, pp:861-869 [Journal]
  35. John M. Hitchcock
    Fractal dimension and logarithmic loss unpredictability. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2003, v:1, n:304, pp:431-441 [Journal]
  36. John M. Hitchcock
    The size of SPP. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2004, v:320, n:2-3, pp:495-503 [Journal]
  37. John M. Hitchcock
    Hausdorff dimension and oracle constructions. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2006, v:355, n:3, pp:382-388 [Journal]
  38. Ryan C. Harkins, John M. Hitchcock
    Dimension, Halfspaces, and the Density of Hard Sets. [Citation Graph (0, 0)][DBLP]
    COCOON, 2007, pp:129-139 [Conf]
  39. John M. Hitchcock, Aduri Pavan
    Comparing reductions to NP-complete sets. [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 2007, v:205, n:5, pp:694-706 [Journal]
  40. Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, Elvira Mayordomo
    Effective Strong Dimension in Algorithmic Information and Computational Complexity. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 2007, v:37, n:3, pp:671-705 [Journal]
  41. John M. Hitchcock, Jack H. Lutz, Sebastiaan Terwijn
    The arithmetical complexity of dimension and randomness. [Citation Graph (0, 0)][DBLP]
    ACM Trans. Comput. Log., 2007, v:8, n:2, pp:- [Journal]

  42. Lower Bounds for Reducibility to the Kolmogorov Random Strings. [Citation Graph (, )][DBLP]


  43. NP-Hard Sets Are Exponentially Dense Unless coNP C NP/poly. [Citation Graph (, )][DBLP]


  44. Kolmogorov Complexity in Randomness Extraction. [Citation Graph (, )][DBLP]


  45. Strong Reductions and Isomorphism of Complete Sets. [Citation Graph (, )][DBLP]


  46. Collapsing and Separating Completeness Notions under Average-Case and Worst-Case Hypotheses. [Citation Graph (, )][DBLP]


  47. Hardness Hypotheses, Derandomization, and Circuit Complexity. [Citation Graph (, )][DBLP]


  48. Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets [Citation Graph (, )][DBLP]


  49. Collapsing and Separating Completeness Notions under Average-Case and Worst-Case Hypotheses [Citation Graph (, )][DBLP]


  50. NP-Hard Sets are Exponentially Dense Unless NP is contained in coNP/poly. [Citation Graph (, )][DBLP]


  51. Comparing Reductions to NP-Complete Sets. [Citation Graph (, )][DBLP]


  52. Hardness Hypotheses, Derandomization, and Circuit Complexity. [Citation Graph (, )][DBLP]


Search in 0.003secs, Finished in 0.004secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002