Search the dblp DataBase
John M. Hitchcock :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
John M. Hitchcock Small Spans in Scaled Dimension. [Citation Graph (0, 0)][DBLP ] IEEE Conference on Computational Complexity, 2004, pp:104-112 [Conf ] John M. Hitchcock , Aduri Pavan , N. V. Vinodchandran Partial Bi-immunity and NP-Completeness. [Citation Graph (0, 0)][DBLP ] IEEE Conference on Computational Complexity, 2004, pp:198-203 [Conf ] John M. Hitchcock , N. V. Vinodchandran Dimension, Entropy Rates, and Compression. [Citation Graph (0, 0)][DBLP ] IEEE Conference on Computational Complexity, 2004, pp:174-183 [Conf ] John M. Hitchcock , Jack H. Lutz , Sebastiaan Terwijn The Arithmetical Complexity of Dimension and Randomness. [Citation Graph (0, 0)][DBLP ] CSL, 2003, pp:241-254 [Conf ] John M. Hitchcock , Aduri Pavan Hardness Hypotheses, Derandomization, and Circuit Complexity. [Citation Graph (0, 0)][DBLP ] FSTTCS, 2004, pp:336-347 [Conf ] Lance Fortnow , John M. Hitchcock , Aduri Pavan , N. V. Vinodchandran , Fengming Wang Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws. [Citation Graph (0, 0)][DBLP ] ICALP (1), 2006, pp:335-345 [Conf ] John M. Hitchcock Correspondence Principles for Effective Dimensions. [Citation Graph (0, 0)][DBLP ] ICALP, 2002, pp:561-571 [Conf ] John M. Hitchcock , Jack H. Lutz Why Computational Complexity Requires Stricter Martingales. [Citation Graph (0, 0)][DBLP ] ICALP, 2002, pp:549-560 [Conf ] John M. Hitchcock , Jack H. Lutz , Elvira Mayordomo Scaled Dimension and Nonuniform Complexity. [Citation Graph (0, 0)][DBLP ] ICALP, 2003, pp:278-290 [Conf ] John M. Hitchcock , Aduri Pavan Comparing Reductions to NP-Complete Sets. [Citation Graph (0, 0)][DBLP ] ICALP (1), 2006, pp:465-476 [Conf ] John M. Hitchcock , María López-Valdés , Elvira Mayordomo Scaled Dimension and the Kolmogorov Complexity of Turing-Hard Sets. [Citation Graph (0, 0)][DBLP ] MFCS, 2004, pp:476-487 [Conf ] Krishna B. Athreya , John M. Hitchcock , Jack H. Lutz , Elvira Mayordomo Effective Strong Dimension in Algorithmic Information and Computational Complexity. [Citation Graph (0, 0)][DBLP ] STACS, 2004, pp:632-643 [Conf ] John M. Hitchcock Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets. [Citation Graph (0, 0)][DBLP ] STACS, 2006, pp:408-419 [Conf ] John M. Hitchcock Gales Suffice for Constructive Dimension [Citation Graph (0, 0)][DBLP ] CoRR, 2002, v:0, n:, pp:- [Journal ] Krishna B. Athreya , John M. Hitchcock , Jack H. Lutz , Elvira Mayordomo Effective Strong Dimension, Algorithmic Information, and Computational Complexity [Citation Graph (0, 0)][DBLP ] CoRR, 2002, v:0, n:, pp:- [Journal ] John M. Hitchcock Small Spans in Scaled Dimension [Citation Graph (0, 0)][DBLP ] CoRR, 2003, v:0, n:, pp:- [Journal ] John M. Hitchcock , Jack H. Lutz , Sebastiaan Terwijn The Arithmetical Complexity of Dimension and Randomness [Citation Graph (0, 0)][DBLP ] CoRR, 2004, v:0, n:, pp:- [Journal ] John M. Hitchcock The Size of SPP [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2003, v:, n:063, pp:- [Journal ] John M. Hitchcock , Aduri Pavan , Pramodchandran N. Variyam Partial Bi-Immunity and NP-Completeness [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:025, pp:- [Journal ] John M. Hitchcock , María López-Valdés , Elvira Mayordomo Scaled dimension and the Kolmogorov complexity of Turing hard sets [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:029, pp:- [Journal ] John M. Hitchcock Hausdorff Dimension and Oracle Constructions [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:072, pp:- [Journal ] John M. Hitchcock , Jack H. Lutz , Sebastiaan Terwijn The Arithmetical Complexity of Dimension and Randomness [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:079, pp:- [Journal ] Lance Fortnow , John M. Hitchcock , Aduri Pavan , N. V. Vinodchandran , Fengming Wang Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2005, v:, n:105, pp:- [Journal ] John M. Hitchcock Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2005, v:, n:161, pp:- [Journal ] John M. Hitchcock Gales suffice for constructive dimension. [Citation Graph (0, 0)][DBLP ] Inf. Process. Lett., 2003, v:86, n:1, pp:9-12 [Journal ] John M. Hitchcock , Aduri Pavan Resource-bounded strong dimension versus resource-bounded category. [Citation Graph (0, 0)][DBLP ] Inf. Process. Lett., 2005, v:95, n:3, pp:377-381 [Journal ] John M. Hitchcock , Jack H. Lutz , Elvira Mayordomo Scaled dimension and nonuniform complexity. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 2004, v:69, n:2, pp:97-122 [Journal ] John M. Hitchcock , N. V. Vinodchandran Dimension, entropy rates, and compression. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 2006, v:72, n:4, pp:760-782 [Journal ] John M. Hitchcock Correspondence Principles for Effective Dimensions. [Citation Graph (0, 0)][DBLP ] Theory Comput. Syst., 2005, v:38, n:5, pp:559-571 [Journal ] John M. Hitchcock , Jack H. Lutz Why Computational Complexity Requires Stricter Martingales. [Citation Graph (0, 0)][DBLP ] Theory Comput. Syst., 2006, v:39, n:2, pp:277-296 [Journal ] John M. Hitchcock Small Spans in Scaled Dimension. [Citation Graph (0, 0)][DBLP ] SIAM J. Comput., 2004, v:34, n:1, pp:170-194 [Journal ] John M. Hitchcock Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets. [Citation Graph (0, 0)][DBLP ] SIAM J. Comput., 2007, v:36, n:6, pp:1696-1708 [Journal ] Chris Bourke , John M. Hitchcock , N. V. Vinodchandran Entropy rates and finite-state dimension. [Citation Graph (0, 0)][DBLP ] Theor. Comput. Sci., 2005, v:349, n:3, pp:392-406 [Journal ] John M. Hitchcock MAX3SAT is exponentially hard to approximate if NP has positive dimension. [Citation Graph (0, 0)][DBLP ] Theor. Comput. Sci., 2002, v:289, n:1, pp:861-869 [Journal ] John M. Hitchcock Fractal dimension and logarithmic loss unpredictability. [Citation Graph (0, 0)][DBLP ] Theor. Comput. Sci., 2003, v:1, n:304, pp:431-441 [Journal ] John M. Hitchcock The size of SPP. [Citation Graph (0, 0)][DBLP ] Theor. Comput. Sci., 2004, v:320, n:2-3, pp:495-503 [Journal ] John M. Hitchcock Hausdorff dimension and oracle constructions. [Citation Graph (0, 0)][DBLP ] Theor. Comput. Sci., 2006, v:355, n:3, pp:382-388 [Journal ] Ryan C. Harkins , John M. Hitchcock Dimension, Halfspaces, and the Density of Hard Sets. [Citation Graph (0, 0)][DBLP ] COCOON, 2007, pp:129-139 [Conf ] John M. Hitchcock , Aduri Pavan Comparing reductions to NP-complete sets. [Citation Graph (0, 0)][DBLP ] Inf. Comput., 2007, v:205, n:5, pp:694-706 [Journal ] Krishna B. Athreya , John M. Hitchcock , Jack H. Lutz , Elvira Mayordomo Effective Strong Dimension in Algorithmic Information and Computational Complexity. [Citation Graph (0, 0)][DBLP ] SIAM J. Comput., 2007, v:37, n:3, pp:671-705 [Journal ] John M. Hitchcock , Jack H. Lutz , Sebastiaan Terwijn The arithmetical complexity of dimension and randomness. [Citation Graph (0, 0)][DBLP ] ACM Trans. Comput. Log., 2007, v:8, n:2, pp:- [Journal ] Lower Bounds for Reducibility to the Kolmogorov Random Strings. [Citation Graph (, )][DBLP ] NP-Hard Sets Are Exponentially Dense Unless coNP C NP/poly. [Citation Graph (, )][DBLP ] Kolmogorov Complexity in Randomness Extraction. [Citation Graph (, )][DBLP ] Strong Reductions and Isomorphism of Complete Sets. [Citation Graph (, )][DBLP ] Collapsing and Separating Completeness Notions under Average-Case and Worst-Case Hypotheses. [Citation Graph (, )][DBLP ] Hardness Hypotheses, Derandomization, and Circuit Complexity. [Citation Graph (, )][DBLP ] Online Learning and Resource-Bounded Dimension: Winnow Yields New Lower Bounds for Hard Sets [Citation Graph (, )][DBLP ] Collapsing and Separating Completeness Notions under Average-Case and Worst-Case Hypotheses [Citation Graph (, )][DBLP ] NP-Hard Sets are Exponentially Dense Unless NP is contained in coNP/poly. [Citation Graph (, )][DBLP ] Comparing Reductions to NP-Complete Sets. [Citation Graph (, )][DBLP ] Hardness Hypotheses, Derandomization, and Circuit Complexity. [Citation Graph (, )][DBLP ] Search in 0.006secs, Finished in 0.008secs