The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Vladimir G. Deineko: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Vladimir G. Deineko, Michael Hoffmann, Yoshio Okamoto, Gerhard J. Woeginger
    The Traveling Salesman Problem with Few Inner Points. [Citation Graph (0, 0)][DBLP]
    COCOON, 2004, pp:268-277 [Conf]
  2. Vladimir G. Deineko, Rüdiger Rudolf, Gerhard J. Woeginger
    Sometimes Travelling is Easy: The Master Tour Problem. [Citation Graph (0, 0)][DBLP]
    ESA, 1995, pp:128-141 [Conf]
  3. Vladimir G. Deineko, Alexandre Tiskin
    One-Sided Monge TSP Is NP-Hard. [Citation Graph (0, 0)][DBLP]
    ICCSA (3), 2006, pp:793-801 [Conf]
  4. Rainer E. Burkard, Vladimir G. Deineko, Gerhard J. Woeginger
    The Travelling Salesman and the PQ-Tree. [Citation Graph (0, 0)][DBLP]
    IPCO, 1996, pp:490-504 [Conf]
  5. Vladimir G. Deineko, Bettina Klinz, Gerhard J. Woeginger
    Four point conditions and exponential neighborhoods for symmetric TSP. [Citation Graph (0, 0)][DBLP]
    SODA, 2006, pp:544-553 [Conf]
  6. Vladimir G. Deineko, Rüdiger Rudolf, Gerhard J. Woeginger
    On the Recognition of Permuted Supnick and Incomplete Monge Matrices. [Citation Graph (0, 0)][DBLP]
    Acta Inf., 1996, v:33, n:6, pp:559-569 [Journal]
  7. Vladimir G. Deineko, Gerhard J. Woeginger
    Well-solvable instances for the partition problem. [Citation Graph (0, 0)][DBLP]
    Appl. Math. Lett., 2006, v:19, n:10, pp:1053-1056 [Journal]
  8. Rainer E. Burkard, Vladimir G. Deineko
    Polynomially Solvable Cases of the Traveling Salesman Problem and a New Exponential Neighborhood. [Citation Graph (0, 0)][DBLP]
    Computing, 1995, v:54, n:3, pp:191-212 [Journal]
  9. Vladimir G. Deineko, Gerhard J. Woeginger
    The Maximum Travelling Salesman Problem on Symmetric Demidenko Matrices. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2000, v:99, n:1-3, pp:413-425 [Journal]
  10. Vladimir G. Deineko, Bettina Klinz, Gerhard J. Woeginger
    Which matrices are immune against the transportation paradox? [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:130, n:3, pp:495-501 [Journal]
  11. Rainer E. Burkard, Vladimir G. Deineko
    On the Euclidean TSP with a permuted Van der Veen matrix. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2004, v:91, n:6, pp:259-262 [Journal]
  12. Rainer E. Burkard, Vladimir G. Deineko
    On the Traveling Salesman Problem with a Relaxed Monge Matrix. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 1998, v:67, n:5, pp:231-237 [Journal]
  13. Vladimir G. Deineko, René van Dal, Günter Rote
    The Convex-Hull-and-Line Traveling Salesman Problem: A Solvable Case. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 1994, v:51, n:3, pp:141-148 [Journal]
  14. Vladimir G. Deineko, Gerhard J. Woeginger
    The Convex-Hull-and-k-Line Travelling Salesman Problem. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 1996, v:59, n:6, pp:295-301 [Journal]
  15. Rainer E. Burkard, Vladimir G. Deineko, Gerhard J. Woeginger
    The Travelling Salesman Problem on Permuted Monge Matrices. [Citation Graph (0, 0)][DBLP]
    J. Comb. Optim., 1998, v:2, n:4, pp:333-350 [Journal]
  16. Vladimir G. Deineko, George Steiner, Zhihui Xue
    Robotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices. [Citation Graph (0, 0)][DBLP]
    J. Comb. Optim., 2005, v:9, n:4, pp:381-399 [Journal]
  17. Vladimir G. Deineko, Michael Hoffmann, Yoshio Okamoto, Gerhard J. Woeginger
    The traveling salesman problem with few inner points. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 2006, v:34, n:1, pp:106-110 [Journal]
  18. Vladimir G. Deineko, Bettina Klinz, Gerhard J. Woeginger
    Exact algorithms for the Hamiltonian cycle problem in planar graphs. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 2006, v:34, n:3, pp:269-274 [Journal]
  19. Vladimir G. Deineko, Gerhard J. Woeginger
    Hardness of approximation of the discrete time-cost tradeoff problem. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 2001, v:29, n:5, pp:207-210 [Journal]
  20. Vladimir G. Deineko, Gerhard J. Woeginger
    A comment on consecutive-2-out-of-n systems. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 2001, v:28, n:4, pp:169-171 [Journal]
  21. Vladimir G. Deineko, Gerhard J. Woeginger
    On the robust assignment problem under a fixed number of cost scenarios. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 2006, v:34, n:2, pp:175-179 [Journal]
  22. Vladimir G. Deineko, Gerhard J. Woeginger
    A solvable case of the quadratic assignment problem. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 1998, v:22, n:1, pp:13-17 [Journal]
  23. Vladimir G. Deineko, Rüdiger Rudolf, Gerhard J. Woeginger
    Sometimes Travelling is Easy: The Master Tour Problem. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 1998, v:11, n:1, pp:81-93 [Journal]
  24. Vladimir G. Deineko, Gerhard J. Woeginger
    On the dimension of simple monotonic games. [Citation Graph (0, 0)][DBLP]
    European Journal of Operational Research, 2006, v:170, n:1, pp:315-318 [Journal]
  25. Vladimir G. Deineko, Gerhard J. Woeginger
    Complexity and approximability results for slicing floorplan designs. [Citation Graph (0, 0)][DBLP]
    European Journal of Operational Research, 2003, v:149, n:3, pp:533-539 [Journal]
  26. Vladimir G. Deineko, Alexandre Tiskin
    Fast Minimum-Weight Double-Tree Shortcutting for Metric TSP. [Citation Graph (0, 0)][DBLP]
    WEA, 2007, pp:136-149 [Conf]
  27. Vladimir G. Deineko, Peter Jonsson, Mikael Klasson, Andrei A. Krokhin
    The approximability of MAX CSP with fixed-value constraints [Citation Graph (0, 0)][DBLP]
    CoRR, 2006, v:0, n:, pp:- [Journal]
  28. Vladimir G. Deineko, Alexandre Tiskin
    Fast minimum-weight double-tree shortcutting for Metric TSP: Is the best one good enough? [Citation Graph (0, 0)][DBLP]
    CoRR, 2007, v:0, n:, pp:- [Journal]

  29. Polygons with inscribed circles and prescribed side lengths. [Citation Graph (, )][DBLP]


  30. A general approach to avoiding two by two submatrices. [Citation Graph (, )][DBLP]


  31. Minimum-weight double-tree shortcutting for Metric TSP: Bounding the approximation ratio [Citation Graph (, )][DBLP]


Search in 0.005secs, Finished in 0.006secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002