The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Peter L. Bartlett: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Peter L. Bartlett, Shahar Mendelson
    Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. [Citation Graph (0, 0)][DBLP]
    COLT/EuroCOLT, 2001, pp:224-240 [Conf]
  2. Peter L. Bartlett, Shahar Mendelson, Petra Philips
    Local Complexities for Empirical Risk Minimization. [Citation Graph (0, 0)][DBLP]
    COLT, 2004, pp:270-284 [Conf]
  3. Peter L. Bartlett, Ambuj Tewari
    Sparseness Versus Estimating Conditional Probabilities: Some Asymptotic Results. [Citation Graph (0, 0)][DBLP]
    COLT, 2004, pp:564-578 [Conf]
  4. Peter L. Bartlett, Robert C. Williamson
    Investigating the Distribution Assumptions in the Pac Learning Model. [Citation Graph (0, 0)][DBLP]
    COLT, 1991, pp:24-32 [Conf]
  5. Peter L. Bartlett
    Learning With a Slowly Changing Distribution. [Citation Graph (0, 0)][DBLP]
    COLT, 1992, pp:243-252 [Conf]
  6. Peter L. Bartlett
    Lower Bounds on the Vapnik-Chervonenkis Dimension of Multi-Layer Threshold Networks. [Citation Graph (0, 0)][DBLP]
    COLT, 1993, pp:144-150 [Conf]
  7. Peter L. Bartlett, Jonathan Baxter
    Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    COLT, 2000, pp:133-141 [Conf]
  8. Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni
    Learning Changing Concepts by Exploiting the Structure of Change. [Citation Graph (0, 0)][DBLP]
    COLT, 1996, pp:131-139 [Conf]
  9. Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi
    Model Selection and Error Estimation. [Citation Graph (0, 0)][DBLP]
    COLT, 2000, pp:286-297 [Conf]
  10. Peter L. Bartlett, Olivier Bousquet, Shahar Mendelson
    Localized Rademacher Complexities. [Citation Graph (0, 0)][DBLP]
    COLT, 2002, pp:44-58 [Conf]
  11. Peter L. Bartlett, Paul Fischer, Klaus-Uwe Höffgen
    Exploiting Random Walks for Learning. [Citation Graph (0, 0)][DBLP]
    COLT, 1994, pp:318-327 [Conf]
  12. Peter L. Bartlett, Philip M. Long
    More Theorems about Scale-sensitive Dimensions and Learning. [Citation Graph (0, 0)][DBLP]
    COLT, 1995, pp:392-401 [Conf]
  13. Peter L. Bartlett, Philip M. Long, Robert C. Williamson
    Fat-Shattering and the Learnability of Real-Valued Functions. [Citation Graph (0, 0)][DBLP]
    COLT, 1994, pp:299-310 [Conf]
  14. Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson
    Covering Numbers for Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    COLT, 1999, pp:267-277 [Conf]
  15. Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
    Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes. [Citation Graph (0, 0)][DBLP]
    COLT, 1994, pp:362-367 [Conf]
  16. Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
    On Efficient Agnostic Learning of Linear Combinations of Basis Functions. [Citation Graph (0, 0)][DBLP]
    COLT, 1995, pp:369-376 [Conf]
  17. Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
    The Importance of Convexity in Learning with Squared Loss. [Citation Graph (0, 0)][DBLP]
    COLT, 1996, pp:140-146 [Conf]
  18. John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin Anthony
    A Framework for Structural Risk Minimisation. [Citation Graph (0, 0)][DBLP]
    COLT, 1996, pp:68-76 [Conf]
  19. Ambuj Tewari, Peter L. Bartlett
    On the Consistency of Multiclass Classification Methods. [Citation Graph (0, 0)][DBLP]
    COLT, 2005, pp:143-157 [Conf]
  20. Martin Anthony, Peter L. Bartlett
    Function learning from interpolation. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1995, pp:211-221 [Conf]
  21. Peter L. Bartlett, Shai Ben-David
    Hardness Results for Neural Network Approximation Problems. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1999, pp:50-62 [Conf]
  22. Peter L. Bartlett, Tamás Linder, Gábor Lugosi
    A Minimax Lower Bound for Empirical Quantizer Design. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1997, pp:210-222 [Conf]
  23. Jonathan Baxter, Peter L. Bartlett
    A Result Relating Convex n-Widths to Covering Numbers with some Applications to Neural Networks. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1997, pp:251-259 [Conf]
  24. Jonathan Baxter, Peter L. Bartlett
    Reinforcement Learning in POMDP's via Direct Gradient Ascent. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:41-48 [Conf]
  25. Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan
    Learning the Kernel Matrix with Semi-Definite Programming. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:323-330 [Conf]
  26. Peter L. Bartlett
    An Introduction to Reinforcement Learning Theory: Value Function Methods. [Citation Graph (0, 0)][DBLP]
    Machine Learning Summer School, 2002, pp:184-202 [Conf]
  27. Peter L. Bartlett
    For Valid Generalization the Size of the Weights is More Important than the Size of the Network. [Citation Graph (0, 0)][DBLP]
    NIPS, 1996, pp:134-140 [Conf]
  28. Peter L. Bartlett, Michael Collins, Benjamin Taskar, David A. McAllester
    Exponentiated Gradient Algorithms for Large-margin Structured Classification. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  29. Peter L. Bartlett, Michael I. Jordan, Jon D. McAuliffe
    Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  30. Peter L. Bartlett, Vitaly Maiorov, Ron Meir
    Almost Linear VC Dimension Bounds for Piecewise Polynomial Networks. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:190-196 [Conf]
  31. Jonathan Baxter, Peter L. Bartlett
    The Canonical Distortion Measure in Feature Space and 1-NN Classification. [Citation Graph (0, 0)][DBLP]
    NIPS, 1997, pp:- [Conf]
  32. Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason
    Generalization in Decision Trees and DNF: Does Size Matter? [Citation Graph (0, 0)][DBLP]
    NIPS, 1997, pp:- [Conf]
  33. Evan Greensmith, Peter L. Bartlett, Jonathan Baxter
    Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:1507-1514 [Conf]
  34. Adam Kowalczyk, Jacek Szymanski, Peter L. Bartlett, Robert C. Williamson
    Examples of learning curves from a modified VC-formalism. [Citation Graph (0, 0)][DBLP]
    NIPS, 1995, pp:344-350 [Conf]
  35. Llew Mason, Peter L. Bartlett, Jonathan Baxter
    Direct Optimization of Margins Improves Generalization in Combined Classifiers. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:288-294 [Conf]
  36. Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean
    Boosting Algorithms as Gradient Descent. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:512-518 [Conf]
  37. Bernhard Schölkopf, Peter L. Bartlett, Alex J. Smola, Robert C. Williamson
    Shrinking the Tube: A New Support Vector Regression Algorithm. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:330-336 [Conf]
  38. Alex J. Smola, Peter L. Bartlett
    Sparse Greedy Gaussian Process Regression. [Citation Graph (0, 0)][DBLP]
    NIPS, 2000, pp:619-625 [Conf]
  39. Robert C. Williamson, Peter L. Bartlett
    Splines, Rational Functions and Neural Networks. [Citation Graph (0, 0)][DBLP]
    NIPS, 1991, pp:1040-1047 [Conf]
  40. Martin Anthony, Peter L. Bartlett
    Function Learning From Interpolation. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 2000, v:9, n:3, pp:- [Journal]
  41. Martin Anthony, Peter L. Bartlett, Yuval Ishai, John Shawe-Taylor
    Valid Generalisation from Approximate Interpolation. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 1996, v:5, n:, pp:191-214 [Journal]
  42. Peter L. Bartlett, Paul Fischer, Klaus-Uwe Höffgen
    Exploiting Random Walks for Learning. [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 2002, v:176, n:2, pp:121-135 [Journal]
  43. Jonathan Baxter, Peter L. Bartlett
    Infinite-Horizon Policy-Gradient Estimation. [Citation Graph (0, 0)][DBLP]
    J. Artif. Intell. Res. (JAIR), 2001, v:15, n:, pp:319-350 [Journal]
  44. Jonathan Baxter, Peter L. Bartlett, Lex Weaver
    Experiments with Infinite-Horizon, Policy-Gradient Estimation. [Citation Graph (0, 0)][DBLP]
    J. Artif. Intell. Res. (JAIR), 2001, v:15, n:, pp:351-381 [Journal]
  45. Peter L. Bartlett, Jonathan Baxter
    Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 2002, v:64, n:1, pp:133-150 [Journal]
  46. Peter L. Bartlett, Philip M. Long
    Prediction, Learning, Uniform Convergence, and Scale-Sensitive Dimensions. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 1998, v:56, n:2, pp:174-190 [Journal]
  47. Peter L. Bartlett, Philip M. Long, Robert C. Williamson
    Fat-Shattering and the Learnability of Real-Valued Functions. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 1996, v:52, n:3, pp:434-452 [Journal]
  48. Llew Mason, Peter L. Bartlett, Mostefa Golea
    Generalization Error of Combined Classifiers. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 2002, v:65, n:2, pp:415-438 [Journal]
  49. Evan Greensmith, Peter L. Bartlett, Jonathan Baxter
    Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2004, v:5, n:, pp:1471-1530 [Journal]
  50. Peter L. Bartlett, Shahar Mendelson
    Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2002, v:3, n:, pp:463-482 [Journal]
  51. Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan
    Learning the Kernel Matrix with Semidefinite Programming. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2004, v:5, n:, pp:27-72 [Journal]
  52. Peter L. Bartlett, Shai Ben-David, Sanjeev R. Kulkarni
    Learning Changing Concepts by Exploiting the Structure of Change. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2000, v:41, n:2, pp:153-174 [Journal]
  53. Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi
    Model Selection and Error Estimation. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2002, v:48, n:1-3, pp:85-113 [Journal]
  54. Llew Mason, Peter L. Bartlett, Jonathan Baxter
    Improved Generalization Through Explicit Optimization of Margins. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2000, v:38, n:3, pp:243-255 [Journal]
  55. Peter L. Bartlett, Vitaly Maiorov, Ron Meir
    Almost Linear VC-Dimension Bounds for Piecewise Polynomial Networks. [Citation Graph (0, 0)][DBLP]
    Neural Computation, 1998, v:10, n:8, pp:2159-2173 [Journal]
  56. Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
    Correction to 'Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes'. [Citation Graph (0, 0)][DBLP]
    Neural Computation, 1997, v:9, n:4, pp:765-769 [Journal]
  57. Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, Peter L. Bartlett
    New Support Vector Algorithms. [Citation Graph (0, 0)][DBLP]
    Neural Computation, 2000, v:12, n:5, pp:1207-1245 [Journal]
  58. Peter L. Bartlett, Shai Ben-David
    Hardness results for neural network approximation problems. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2002, v:284, n:1, pp:53-66 [Journal]
  59. Peter L. Bartlett
    The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important than the Size of the Network. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 1998, v:44, n:2, pp:525-536 [Journal]
  60. Peter L. Bartlett, Sanjeev R. Kulkarni, S. E. Posner
    Covering numbers for real-valued function classes. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 1997, v:43, n:5, pp:1721-1724 [Journal]
  61. Peter L. Bartlett, Tamás Linder, Gábor Lugosi
    The Minimax Distortion Redundancy in Empirical Quantizer Design. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 1998, v:44, n:5, pp:1802-1813 [Journal]
  62. Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson
    Covering numbers for support vector machines. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 2002, v:48, n:1, pp:239-250 [Journal]
  63. Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
    Efficient agnostic learning of neural networks with bounded fan-in. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 1996, v:42, n:6, pp:2118-2132 [Journal]
  64. Wee Sun Lee, Peter L. Bartlett, Robert C. Williamson
    The Importance of Convexity in Learning with Squared Loss. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 1998, v:44, n:5, pp:1974-1980 [Journal]
  65. John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, Martin Anthony
    Structural Risk Minimization Over Data-Dependent Hierarchies. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 1998, v:44, n:5, pp:1926-1940 [Journal]
  66. Ambuj Tewari, Peter L. Bartlett
    Bounded Parameter Markov Decision Processes with Average Reward Criterion. [Citation Graph (0, 0)][DBLP]
    COLT, 2007, pp:263-277 [Conf]
  67. Jacob Abernethy, Peter L. Bartlett, Alexander Rakhlin
    Multitask Learning with Expert Advice. [Citation Graph (0, 0)][DBLP]
    COLT, 2007, pp:484-498 [Conf]
  68. Alexander Rakhlin, Jacob Abernethy, Peter L. Bartlett
    Online discovery of similarity mappings. [Citation Graph (0, 0)][DBLP]
    ICML, 2007, pp:767-774 [Conf]
  69. Peter L. Bartlett, Ambuj Tewari
    Sample Complexity of Policy Search with Known Dynamics. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:97-104 [Conf]
  70. Peter L. Bartlett, Mikhail Traskin
    AdaBoost is Consistent. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:105-112 [Conf]
  71. Benjamin I. P. Rubinstein, Peter L. Bartlett, J. Hyam Rubinstein
    Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:1193-1200 [Conf]

  72. Optimal Online Prediction in Adversarial Environments. [Citation Graph (, )][DBLP]


  73. A Regularization Approach to Metrical Task Systems. [Citation Graph (, )][DBLP]


  74. Open problems in the security of learning. [Citation Graph (, )][DBLP]


  75. Optimal Stragies and Minimax Lower Bounds for Online Convex Games. [Citation Graph (, )][DBLP]


  76. High-Probability Regret Bounds for Bandit Online Linear Optimization. [Citation Graph (, )][DBLP]


  77. A Learning-Based Approach to Reactive Security. [Citation Graph (, )][DBLP]


  78. Implicit Online Learning. [Citation Graph (, )][DBLP]


  79. Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs. [Citation Graph (, )][DBLP]


  80. Adaptive Online Gradient Descent. [Citation Graph (, )][DBLP]


  81. A Unifying View of Multiple Kernel Learning. [Citation Graph (, )][DBLP]


  82. Learning to act in uncertain environments: technical perspective. [Citation Graph (, )][DBLP]


  83. A Stochastic View of Optimal Regret through Minimax Duality [Citation Graph (, )][DBLP]


  84. Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning [Citation Graph (, )][DBLP]


  85. A Learning-Based Approach to Reactive Security [Citation Graph (, )][DBLP]


  86. A Unifying View of Multiple Kernel Learning [Citation Graph (, )][DBLP]


Search in 0.023secs, Finished in 0.025secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002