The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Alexander J. Smola: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Yasemin Altun, Alexander J. Smola
    Unifying Divergence Minimization and Statistical Inference Via Convex Duality. [Citation Graph (0, 0)][DBLP]
    COLT, 2006, pp:139-153 [Conf]
  2. Quoc V. Le, Alexander J. Smola, Thomas Gärtner, Yasemin Altun
    Transductive Gaussian Process Regression with Automatic Model Selection. [Citation Graph (0, 0)][DBLP]
    ECML, 2006, pp:306-317 [Conf]
  3. Stéphane Canu, Alexander J. Smola
    Kernel methods and the exponential family. [Citation Graph (0, 0)][DBLP]
    ESANN, 2005, pp:447-454 [Conf]
  4. Karsten M. Borgwardt, Omri Guttman, S. V. N. Vishwanathan, Alexander J. Smola
    Joint Regularization. [Citation Graph (0, 0)][DBLP]
    ESANN, 2005, pp:455-460 [Conf]
  5. Quoc V. Le, Alexander J. Smola, Stéphane Canu
    Heteroscedastic Gaussian process regression. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:489-496 [Conf]
  6. Cheng Soon Ong, Xavier Mary, Stéphane Canu, Alexander J. Smola
    Learning with non-positive kernels. [Citation Graph (0, 0)][DBLP]
    ICML, 2004, pp:- [Conf]
  7. Hao Shen, Knut Hüper, Alexander J. Smola
    Newton-Like Methods for Nonparametric Independent Component Analysis. [Citation Graph (0, 0)][DBLP]
    ICONIP (1), 2006, pp:1068-1077 [Conf]
  8. Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, Alexander J. Smola
    Integrating structured biological data by Kernel Maximum Mean Discrepancy. [Citation Graph (0, 0)][DBLP]
    ISMB (Supplement of Bioinformatics), 2006, pp:49-57 [Conf]
  9. Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J. Smola, Hans-Peter Kriegel
    Protein function prediction via graph kernels. [Citation Graph (0, 0)][DBLP]
    ISMB (Supplement of Bioinformatics), 2005, pp:47-56 [Conf]
  10. Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson
    Hyperkernels. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:478-485 [Conf]
  11. Gunnar Rätsch, Alexander J. Smola, Sebastian Mika
    Adapting Codes and Embeddings for Polychotomies. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:513-520 [Conf]
  12. Alexander J. Smola, Vishy Vishwanathan, Eleazar Eskin
    Laplace Propagation. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  13. S. V. N. Vishwanathan, Alexander J. Smola
    Fast Kernels for String and Tree Matching. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:569-576 [Conf]
  14. S. V. N. Vishwanathan, Alexander J. Smola, René Vidal
    Binet-Cauchy Kernels on Dynamical Systems and its Application to the Analysis of Dynamic Scenes. [Citation Graph (0, 0)][DBLP]
    International Journal of Computer Vision, 2007, v:73, n:1, pp:95-119 [Journal]
  15. Stéphane Canu, Alexander J. Smola
    Kernel methods and the exponential family. [Citation Graph (0, 0)][DBLP]
    Neurocomputing, 2006, v:69, n:7-9, pp:714-720 [Journal]
  16. S. V. N. Vishwanathan, Karsten M. Borgwardt, Omri Guttman, Alexander J. Smola
    Kernel extrapolation. [Citation Graph (0, 0)][DBLP]
    Neurocomputing, 2006, v:69, n:7-9, pp:721-729 [Journal]
  17. Arthur Gretton, Ralf Herbrich, Alexander J. Smola, Olivier Bousquet, Bernhard Schölkopf
    Kernel Methods for Measuring Independence. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2005, v:6, n:, pp:2075-2129 [Journal]
  18. Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson
    Learning the Kernel with Hyperkernels. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2005, v:6, n:, pp:1043-1071 [Journal]
  19. Ichiro Takeuchi, Quoc V. Le, Tim D. Sears, Alexander J. Smola
    Nonparametric Quantile Estimation. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2006, v:7, n:, pp:1231-1264 [Journal]
  20. Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, Alexander J. Smola
    Second Order Cone Programming Approaches for Handling Missing and Uncertain Data. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2006, v:7, n:, pp:1283-1314 [Journal]
  21. Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola
    A Kernel Approach to Comparing Distributions. [Citation Graph (0, 0)][DBLP]
    AAAI, 2007, pp:1637-1641 [Conf]
  22. Alexander J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf
    A Hilbert Space Embedding for Distributions. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2007, pp:40-41 [Conf]
  23. Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt
    A dependence maximization view of clustering. [Citation Graph (0, 0)][DBLP]
    ICML, 2007, pp:815-822 [Conf]
  24. Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola
    A Kernel Method for the Two-Sample-Problem. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:513-520 [Conf]
  25. Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schölkopf
    Correcting Sample Selection Bias by Unlabeled Data. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:601-608 [Conf]
  26. Yasemin Altun, Alexander J. Smola, Thomas Hofmann
    Exponential Families for Conditional Random Fields. [Citation Graph (0, 0)][DBLP]
    UAI, 2004, pp:2-9 [Conf]
  27. Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo
    Supervised Feature Selection via Dependence Estimation [Citation Graph (0, 0)][DBLP]
    CoRR, 2007, v:0, n:, pp:- [Journal]
  28. Quoc Le, Alexander J. Smola
    Direct Optimization of Ranking Measures [Citation Graph (0, 0)][DBLP]
    CoRR, 2007, v:0, n:, pp:- [Journal]

  29. Discriminative human action segmentation and recognition using semi-Markov model. [Citation Graph (, )][DBLP]


  30. Hilbert space embeddings of conditional distributions with applications to dynamical systems. [Citation Graph (, )][DBLP]


  31. Feature hashing for large scale multitask learning. [Citation Graph (, )][DBLP]


  32. Hilbert Space Embeddings of Hidden Markov Models. [Citation Graph (, )][DBLP]


  33. Gene selection via the BAHSIC family of algorithms. [Citation Graph (, )][DBLP]


  34. Tighter Bounds for Structured Estimation. [Citation Graph (, )][DBLP]


  35. Robust Near-Isometric Matching via Structured Learning of Graphical Models. [Citation Graph (, )][DBLP]


  36. Near-optimal Supervised Feature Selection among Frequent Subgraphs. [Citation Graph (, )][DBLP]


  37. A Kernel Method for the Two-Sample Problem [Citation Graph (, )][DBLP]


  38. Robust Near-Isometric Matching via Structured Learning of Graphical Models [Citation Graph (, )][DBLP]


Search in 0.004secs, Finished in 0.005secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002