|
Search the dblp DataBase
Michael I. Jordan:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
- Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan
Mean Field Theory for Sigmoid Belief Networks. [Citation Graph (1, 0)][DBLP] J. Artif. Intell. Res. (JAIR), 1996, v:4, n:, pp:61-76 [Journal]
- Michael I. Jordan
A Statistical Approach to Decision Tree Modeling. [Citation Graph (0, 0)][DBLP] COLT, 1994, pp:13-20 [Conf]
- Eric P. Xing, Wei Wu, Michael I. Jordan, Richard M. Karp
LOGOS: a modular Bayesian model for de novo motif detection. [Citation Graph (0, 0)][DBLP] CSB, 2003, pp:266-276 [Conf]
- Fernando De Bernardinis, M. I. Jordan, Alberto L. Sangiovanni-Vincentelli
Support vector machines for analog circuit performance representation. [Citation Graph (0, 0)][DBLP] DAC, 2003, pp:964-969 [Conf]
- Neil D. Lawrence, John C. Platt, Michael I. Jordan
Extensions of the Informative Vector Machine. [Citation Graph (0, 0)][DBLP] Deterministic and Statistical Methods in Machine Learning, 2004, pp:56-87 [Conf]
- Peter Bodíc, Greg Friedman, Lukas Biewald, Helen Levine, George Candea, Kayur Patel, Gilman Tolle, Jonathan Hui, Armando Fox, Michael I. Jordan, David A. Patterson
Combining Visualization and Statistical Analysis to Improve Operator Confidence and Efficiency for Failure Detection and Localization. [Citation Graph (0, 0)][DBLP] ICAC, 2005, pp:89-100 [Conf]
- Mike Y. Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, Eric A. Brewer
Failure Diagnosis Using Decision Trees. [Citation Graph (0, 0)][DBLP] ICAC, 2004, pp:36-43 [Conf]
- Francis R. Bach, Gert R. G. Lanckriet, Michael I. Jordan
Multiple kernel learning, conic duality, and the SMO algorithm. [Citation Graph (0, 0)][DBLP] ICML, 2004, pp:- [Conf]
- David M. Blei, Michael I. Jordan
Variational methods for the Dirichlet process. [Citation Graph (0, 0)][DBLP] ICML, 2004, pp:- [Conf]
- Francis R. Bach, Michael I. Jordan
Predictive low-rank decomposition for kernel methods. [Citation Graph (0, 0)][DBLP] ICML, 2005, pp:33-40 [Conf]
- Barbara E. Engelhardt, Michael I. Jordan, Steven E. Brenner
A graphical model for predicting protein molecular function. [Citation Graph (0, 0)][DBLP] ICML, 2006, pp:297-304 [Conf]
- Michael I. Jordan
A Statistical Approach to Decision Tree Modeling. [Citation Graph (0, 0)][DBLP] ICML, 1994, pp:363-370 [Conf]
- Michael I. Jordan, Robert A. Jacobs
Supervised Learning and Divide-and-Conquer: A Statistical Approach. [Citation Graph (0, 0)][DBLP] ICML, 1993, pp:159-166 [Conf]
- Michael I. Jordan, David E. Rumelhart
Internal World Models and Supervised Learning. [Citation Graph (0, 0)][DBLP] ML, 1991, pp:70-74 [Conf]
- Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan
Learning the Kernel Matrix with Semi-Definite Programming. [Citation Graph (0, 0)][DBLP] ICML, 2002, pp:323-330 [Conf]
- Andrew Y. Ng, Michael I. Jordan
Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection. [Citation Graph (0, 0)][DBLP] ICML, 2001, pp:377-384 [Conf]
- XuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan
Decentralized detection and classification using kernel methods. [Citation Graph (0, 0)][DBLP] ICML, 2004, pp:- [Conf]
- Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan
Learning Without State-Estimation in Partially Observable Markovian Decision Processes. [Citation Graph (0, 0)][DBLP] ICML, 1994, pp:284-292 [Conf]
- Eric P. Xing, Michael I. Jordan, Richard M. Karp
Feature selection for high-dimensional genomic microarray data. [Citation Graph (0, 0)][DBLP] ICML, 2001, pp:601-608 [Conf]
- Eric P. Xing, Roded Sharan, Michael I. Jordan
Bayesian haplo-type inference via the dirichlet process. [Citation Graph (0, 0)][DBLP] ICML, 2004, pp:- [Conf]
- Eric P. Xing, Kyung-Ah Sohn, Michael I. Jordan, Yee Whye Teh
Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture. [Citation Graph (0, 0)][DBLP] ICML, 2006, pp:1049-1056 [Conf]
- Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, Alex Aiken
Statistical debugging: simultaneous identification of multiple bugs. [Citation Graph (0, 0)][DBLP] ICML, 2006, pp:1105-1112 [Conf]
- Andrew Y. Ng, Alice X. Zheng, Michael I. Jordan
Link Analysis, Eigenvectors and Stability. [Citation Graph (0, 0)][DBLP] IJCAI, 2001, pp:903-910 [Conf]
- Simon Lacoste-Julien, Benjamin Taskar, Dan Klein, Michael I. Jordan
Word Alignment via Quadratic Assignment. [Citation Graph (0, 0)][DBLP] HLT-NAACL, 2006, pp:- [Conf]
- Francis R. Bach, Michael I. Jordan
Thin Junction Trees. [Citation Graph (0, 0)][DBLP] NIPS, 2001, pp:569-576 [Conf]
- Francis R. Bach, Michael I. Jordan
Learning Graphical Models with Mercer Kernels. [Citation Graph (0, 0)][DBLP] NIPS, 2002, pp:1009-1016 [Conf]
- Francis R. Bach, Michael I. Jordan
Learning Spectral Clustering. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- Francis R. Bach, Michael I. Jordan
Blind One-microphone Speech Separation: A Spectral Learning Approach. [Citation Graph (0, 0)][DBLP] NIPS, 2004, pp:- [Conf]
- Francis R. Bach, Romain Thibaux, Michael I. Jordan
Computing regularization paths for learning multiple kernels. [Citation Graph (0, 0)][DBLP] NIPS, 2004, pp:- [Conf]
- Peter L. Bartlett, Michael I. Jordan, Jon D. McAuliffe
Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- Daphne Bavelier, Michael I. Jordan
A Dynamical Model of Priming and Repetition Blindness. [Citation Graph (0, 0)][DBLP] NIPS, 1992, pp:879-886 [Conf]
- Christopher M. Bishop, Neil D. Lawrence, Tommi Jaakkola, Michael I. Jordan
Approximating Posterior Distributions in Belief Networks Using Mixtures. [Citation Graph (0, 0)][DBLP] NIPS, 1997, pp:- [Conf]
- David M. Blei, Thomas L. Griffiths, Michael I. Jordan, Joshua B. Tenenbaum
Hierarchical Topic Models and the Nested Chinese Restaurant Process. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- David M. Blei, Andrew Y. Ng, Michael I. Jordan
Latent Dirichlet Allocation. [Citation Graph (0, 0)][DBLP] NIPS, 2001, pp:601-608 [Conf]
- David A. Cohn, Zoubin Ghahramani, Michael I. Jordan
Active Learning with Statistical Models. [Citation Graph (0, 0)][DBLP] NIPS, 1994, pp:705-712 [Conf]
- Patrick Flaherty, Michael I. Jordan, Adam P. Arkin
Robust design of biological experiments. [Citation Graph (0, 0)][DBLP] NIPS, 2005, pp:- [Conf]
- Kenji Fukumizu, Francis R. Bach, Michael I. Jordan
Kernel Dimensionality Reduction for Supervised Learning. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- Zoubin Ghahramani, Michael I. Jordan
Supervised learning from incomplete data via an EM approach. [Citation Graph (0, 0)][DBLP] NIPS, 1993, pp:120-127 [Conf]
- Zoubin Ghahramani, Michael I. Jordan
Factorial Hidden Markov Models. [Citation Graph (0, 0)][DBLP] NIPS, 1995, pp:472-478 [Conf]
- Zoubin Ghahramani, Daniel M. Wolpert, Michael I. Jordan
Computational Structure of coordinate transformations: A generalization study. [Citation Graph (0, 0)][DBLP] NIPS, 1994, pp:1125-1132 [Conf]
- Makoto Hirayama, Eric Vatikiotis-Bateson, Mitsuo Kawato, Michael I. Jordan
Forward Dynamics Modeling of Speech Motor Control Using Physiological Data. [Citation Graph (0, 0)][DBLP] NIPS, 1991, pp:191-198 [Conf]
- Thomas Hofmann, Jan Puzicha, Michael I. Jordan
Learning from Dyadic Data. [Citation Graph (0, 0)][DBLP] NIPS, 1998, pp:466-472 [Conf]
- John F. Houde, Michael I. Jordan
Adaptation in Speech Motor Control. [Citation Graph (0, 0)][DBLP] NIPS, 1997, pp:- [Conf]
- Tommi Jaakkola, Michael I. Jordan
Recursive Algorithms for Approximating Probabilities in Graphical Models. [Citation Graph (0, 0)][DBLP] NIPS, 1996, pp:487-493 [Conf]
- Tommi Jaakkola, Michael I. Jordan, Satinder P. Singh
Convergence of Stochastic Iterative Dynamic Programming Algorithms. [Citation Graph (0, 0)][DBLP] NIPS, 1993, pp:703-710 [Conf]
- Tommi Jaakkola, Satinder P. Singh, Michael I. Jordan
Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. [Citation Graph (0, 0)][DBLP] NIPS, 1994, pp:345-352 [Conf]
- Tommi Jaakkola, Lawrence K. Saul, Michael I. Jordan
Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks. [Citation Graph (0, 0)][DBLP] NIPS, 1995, pp:528-534 [Conf]
- Robert A. Jacobs, Michael I. Jordan
A Competitive Modular Connectionist Architecture. [Citation Graph (0, 0)][DBLP] NIPS, 1990, pp:767-773 [Conf]
- Michael I. Jordan, Zoubin Ghahramani, Lawrence K. Saul
Hidden Markov Decision Trees. [Citation Graph (0, 0)][DBLP] NIPS, 1996, pp:501-507 [Conf]
- Michael I. Jordan, Robert A. Jacobs
Learning to Control an Unstable System with Forward Modeling. [Citation Graph (0, 0)][DBLP] NIPS, 1989, pp:324-331 [Conf]
- Michael I. Jordan, Robert A. Jacobs
Hierarchies of Adaptive Experts. [Citation Graph (0, 0)][DBLP] NIPS, 1991, pp:985-992 [Conf]
- Gert R. G. Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, Michael I. Jordan
Minimax Probability Machine. [Citation Graph (0, 0)][DBLP] NIPS, 2001, pp:801-807 [Conf]
- Gert R. G. Lanckriet, Laurent El Ghaoui, Michael I. Jordan
Robust Novelty Detection with Single-Class MPM. [Citation Graph (0, 0)][DBLP] NIPS, 2002, pp:905-912 [Conf]
- Neil D. Lawrence, Michael I. Jordan
Semi-supervised Learning via Gaussian Processes. [Citation Graph (0, 0)][DBLP] NIPS, 2004, pp:- [Conf]
- Andrew Y. Ng, Michael I. Jordan
On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. [Citation Graph (0, 0)][DBLP] NIPS, 2001, pp:841-848 [Conf]
- Marina Meila, Michael I. Jordan
Learning Fine Motion by Markov Mixtures of Experts. [Citation Graph (0, 0)][DBLP] NIPS, 1995, pp:1003-1009 [Conf]
- Marina Meila, Michael I. Jordan
Triangulation by Continuous Embedding. [Citation Graph (0, 0)][DBLP] NIPS, 1996, pp:557-563 [Conf]
- Marina Meila, Michael I. Jordan
Estimating Dependency Structure as a Hidden Variable. [Citation Graph (0, 0)][DBLP] NIPS, 1997, pp:- [Conf]
- Andrew Y. Ng, Michael I. Jordan, Yair Weiss
On Spectral Clustering: Analysis and an algorithm. [Citation Graph (0, 0)][DBLP] NIPS, 2001, pp:849-856 [Conf]
- Andrew Y. Ng, Michael I. Jordan
Approximate Inference A lgorithms for Two-Layer Bayesian Networks. [Citation Graph (0, 0)][DBLP] NIPS, 1999, pp:533-539 [Conf]
- Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, Shankar Sastry
Autonomous Helicopter Flight via Reinforcement Learning. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- XuanLong Nguyen, Michael I. Jordan
On the Concentration of Expectation and Approximate Inference in Layered Networks. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- XuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan
Divergences, surrogate loss functions and experimental design. [Citation Graph (0, 0)][DBLP] NIPS, 2005, pp:- [Conf]
- Philip N. Sabes, Michael I. Jordan
Reinforcement Learning by Probability Matching. [Citation Graph (0, 0)][DBLP] NIPS, 1995, pp:1080-1086 [Conf]
- Lawrence K. Saul, Michael I. Jordan
Boltzmann Chains and Hidden Markov Models. [Citation Graph (0, 0)][DBLP] NIPS, 1994, pp:435-442 [Conf]
- Lawrence K. Saul, Michael I. Jordan
Exploiting Tractable Substructures in Intractable Networks. [Citation Graph (0, 0)][DBLP] NIPS, 1995, pp:486-492 [Conf]
- Lawrence K. Saul, Michael I. Jordan
A Variational Principle for Model-based Morphing. [Citation Graph (0, 0)][DBLP] NIPS, 1996, pp:267-273 [Conf]
- Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan
Reinforcement Learning with Soft State Aggregation. [Citation Graph (0, 0)][DBLP] NIPS, 1994, pp:361-368 [Conf]
- Benjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan
Structured Prediction via the Extragradient Method. [Citation Graph (0, 0)][DBLP] NIPS, 2005, pp:- [Conf]
- Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, David M. Blei
Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes. [Citation Graph (0, 0)][DBLP] NIPS, 2004, pp:- [Conf]
- Emanuel Todorov, Michael I. Jordan
A Minimal Intervention Principle for Coordinated Movement. [Citation Graph (0, 0)][DBLP] NIPS, 2002, pp:27-34 [Conf]
- Martin J. Wainwright, Michael I. Jordan
Semidefinite Relaxations for Approximate Inference on Graphs with Cycles. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- Daniel M. Wolpert, Zoubin Ghahramani, Michael I. Jordan
Forward dynamic models in human motor control: Psychophysical evidence. [Citation Graph (0, 0)][DBLP] NIPS, 1994, pp:43-50 [Conf]
- Eric P. Xing, Michael I. Jordan, Richard M. Karp, Stuart J. Russell
A Hierarchical Bayesian Markovian Model for Motifs in Biopolymer Sequences. [Citation Graph (0, 0)][DBLP] NIPS, 2002, pp:1489-1496 [Conf]
- Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, Stuart J. Russell
Distance Metric Learning with Application to Clustering with Side-Information. [Citation Graph (0, 0)][DBLP] NIPS, 2002, pp:505-512 [Conf]
- Lei Xu, Michael I. Jordan, Geoffrey E. Hinton
An Alternative Model for Mixtures of Experts. [Citation Graph (0, 0)][DBLP] NIPS, 1994, pp:633-640 [Conf]
- Alice X. Zheng, Michael I. Jordan, Ben Liblit, Alexander Aiken
Statistical Debugging of Sampled Programs. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- Alexandre d'Aspremont, Laurent El Ghaoui, Michael I. Jordan, Gert R. G. Lanckriet
A Direct Formulation for Sparse PCA Using Semidefinite Programming. [Citation Graph (0, 0)][DBLP] NIPS, 2004, pp:- [Conf]
- Ben Liblit, Alexander Aiken, Alice X. Zheng, Michael I. Jordan
Bug isolation via remote program sampling. [Citation Graph (0, 0)][DBLP] PLDI, 2003, pp:141-154 [Conf]
- Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, Michael I. Jordan
Scalable statistical bug isolation. [Citation Graph (0, 0)][DBLP] PLDI, 2005, pp:15-26 [Conf]
- Gert R. G. Lanckriet, Minghua Deng, Nello Cristianini, Michael I. Jordan, William Stafford Noble
Kernel-Based Data Fusion and Its Application to Protein Function Prediction in Yeast. [Citation Graph (0, 0)][DBLP] Pacific Symposium on Biocomputing, 2004, pp:300-311 [Conf]
- Robert A. Jacobs, Michael I. Jordan, Andrew G. Barto
Task Decompostiion Through Competition in a Modular Connectionist Architecture: The What and Where Vision Tasks. [Citation Graph (0, 0)][DBLP] Machine Learning: From Theory to Applications, 1993, pp:175-202 [Conf]
- David M. Blei, Michael I. Jordan
Modeling annotated data. [Citation Graph (0, 0)][DBLP] SIGIR, 2003, pp:127-134 [Conf]
- Alice X. Zheng, Andrew Y. Ng, Michael I. Jordan
Stable Algorithms for Link Analysis. [Citation Graph (0, 0)][DBLP] SIGIR, 2001, pp:258-266 [Conf]
- Francis R. Bach, Michael I. Jordan
Tree-dependent Component Analysis. [Citation Graph (0, 0)][DBLP] UAI, 2002, pp:36-44 [Conf]
- Amol Deshpande, Minos N. Garofalakis, Michael I. Jordan
Efficient Stepwise Selection in Decomposable Models. [Citation Graph (0, 0)][DBLP] UAI, 2001, pp:128-135 [Conf]
- Tommi Jaakkola, Michael I. Jordan
Computing upper and lower bounds on likelihoods in intractable networks. [Citation Graph (0, 0)][DBLP] UAI, 1996, pp:340-348 [Conf]
- Neil D. Lawrence, Christopher M. Bishop, Michael I. Jordan
Mixture Representations for Inference and Learning in Boltzmann Machines. [Citation Graph (0, 0)][DBLP] UAI, 1998, pp:320-327 [Conf]
- Kevin P. Murphy, Yair Weiss, Michael I. Jordan
Loopy Belief Propagation for Approximate Inference: An Empirical Study. [Citation Graph (0, 0)][DBLP] UAI, 1999, pp:467-475 [Conf]
- Andrew Y. Ng, Michael I. Jordan
PEGASUS: A policy search method for large MDPs and POMDPs. [Citation Graph (0, 0)][DBLP] UAI, 2000, pp:406-415 [Conf]
- Sekhar Tatikonda, Michael I. Jordan
Loopy Belief Propogation and Gibbs Measures. [Citation Graph (0, 0)][DBLP] UAI, 2002, pp:493-500 [Conf]
- Eric P. Xing, Michael I. Jordan, Stuart J. Russell
A generalized mean field algorithm for variational inference in exponential families. [Citation Graph (0, 0)][DBLP] UAI, 2003, pp:583-591 [Conf]
- L. R. Grate, Chiranjib Bhattacharyya, Michael I. Jordan, I. Saira Mian
Simultaneous Relevant Feature Identification and Classification in High-Dimensional Spaces. [Citation Graph (0, 0)][DBLP] WABI, 2002, pp:1-9 [Conf]
- Patrick Flaherty, Guri Giaever, Jochen Kumm, Michael I. Jordan, Adam P. Arkin
A latent variable model for chemogenomic profiling. [Citation Graph (0, 0)][DBLP] Bioinformatics, 2005, v:21, n:15, pp:3286-3293 [Journal]
- Gert R. G. Lanckriet, Tijl De Bie, Nello Cristianini, Michael I. Jordan, William Stafford Noble
A statistical framework for genomic data fusion. [Citation Graph (0, 0)][DBLP] Bioinformatics, 2004, v:20, n:16, pp:2626-2635 [Journal]
- Jon D. McAuliffe, Lior Pachter, Michael I. Jordan
Multiple-sequence functional annotation and the generalized hidden Markov phylogeny. [Citation Graph (0, 0)][DBLP] Bioinformatics, 2004, v:20, n:12, pp:1850-1860 [Journal]
- David M. Blei, K. Franks, Michael I. Jordan, I. Saira Mian
Statistical modeling of biomedical corpora: mining the Caenorhabditis Genetic Center Bibliography for genes related to life span. [Citation Graph (0, 0)][DBLP] BMC Bioinformatics, 2006, v:7, n:, pp:250- [Journal]
- Robert A. Jacobs, Michael I. Jordan, Andrew G. Barto
Task Decomposition Through Competition in a Modular Connectionist Architecture: The What and Where Vision Tasks. [Citation Graph (0, 0)][DBLP] Cognitive Science, 1991, v:15, n:2, pp:219-250 [Journal]
- Michael I. Jordan, David E. Rumelhart
Forward Models: Supervised Learning with a Distal Teacher. [Citation Graph (0, 0)][DBLP] Cognitive Science, 1992, v:16, n:3, pp:307-354 [Journal]
- Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan
Mean Field Theory for Sigmoid Belief Networks [Citation Graph (0, 0)][DBLP] CoRR, 1996, v:0, n:, pp:- [Journal]
- David A. Cohn, Zoubin Ghahramani, Michael I. Jordan
Active Learning with Statistical Models [Citation Graph (0, 0)][DBLP] CoRR, 1996, v:0, n:, pp:- [Journal]
- Alexandre d'Aspremont, Laurent El Ghaoui, Michael I. Jordan, Gert R. G. Lanckriet
A direct formulation for sparse PCA using semidefinite programming [Citation Graph (0, 0)][DBLP] CoRR, 2004, v:0, n:, pp:- [Journal]
- Michael I. Jordan, Christopher M. Bishop
Neural Networks. [Citation Graph (0, 0)][DBLP] ACM Comput. Surv., 1996, v:28, n:1, pp:73-75 [Journal]
- David A. Cohn, Zoubin Ghahramani, Michael I. Jordan
Active Learning with Statistical Models. [Citation Graph (0, 0)][DBLP] J. Artif. Intell. Res. (JAIR), 1996, v:4, n:, pp:129-145 [Journal]
- Tommi Jaakkola, Michael I. Jordan
Variational Probabilistic Inference and the QMR-DT Network. [Citation Graph (0, 0)][DBLP] J. Artif. Intell. Res. (JAIR), 1999, v:10, n:, pp:291-322 [Journal]
- Eric P. Xing, Wei Wu, Michael I. Jordan, Richard M. Karp
Logos: a Modular Bayesian Model for de Novo Motif Detection. [Citation Graph (0, 0)][DBLP] J. Bioinformatics and Computational Biology, 2004, v:2, n:1, pp:127-154 [Journal]
- Chiranjib Bhattacharyya, L. R. Grate, Michael I. Jordan, Laurent El Ghaoui, I. Saira Mian
Robust Sparse Hyperplane Classifiers: Application to Uncertain Molecular Profiling Data. [Citation Graph (0, 0)][DBLP] Journal of Computational Biology, 2004, v:11, n:6, pp:1073-1089 [Journal]
- Francis R. Bach, Michael I. Jordan
Kernel Independent Component Analysis. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2002, v:3, n:, pp:1-48 [Journal]
- Francis R. Bach, Michael I. Jordan
Beyond Independent Components: Trees and Clusters. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2003, v:4, n:, pp:1205-1233 [Journal]
- Kobus Barnard, Pinar Duygulu, David A. Forsyth, Nando de Freitas, David M. Blei, Michael I. Jordan
Matching Words and Pictures. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2003, v:3, n:, pp:1107-1135 [Journal]
- David M. Blei, Andrew Y. Ng, Michael I. Jordan
Latent Dirichlet Allocation. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2003, v:3, n:, pp:993-1022 [Journal]
- Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan
Learning the Kernel Matrix with Semidefinite Programming. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2004, v:5, n:, pp:27-72 [Journal]
- Gert R. G. Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, Michael I. Jordan
A Robust Minimax Approach to Classification. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2002, v:3, n:, pp:555-582 [Journal]
- Kenji Fukumizu, Francis R. Bach, Michael I. Jordan
Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2004, v:5, n:, pp:73-99 [Journal]
- Marina Meila, Michael I. Jordan
Learning with Mixtures of Trees. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2000, v:1, n:, pp:1-48 [Journal]
- Benjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan
Structured Prediction, Dual Extragradient and Bregman Projections. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2006, v:7, n:, pp:1627-1653 [Journal]
- Francis R. Bach, Michael I. Jordan
Learning Spectral Clustering, With Application To Speech Separation. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2006, v:7, n:, pp:1963-2001 [Journal]
- Christophe Andrieu, Nando de Freitas, Arnaud Doucet, Michael I. Jordan
An Introduction to MCMC for Machine Learning. [Citation Graph (0, 0)][DBLP] Machine Learning, 2003, v:50, n:1-2, pp:5-43 [Journal]
- Zoubin Ghahramani, Michael I. Jordan
Factorial Hidden Markov Models. [Citation Graph (0, 0)][DBLP] Machine Learning, 1997, v:29, n:2-3, pp:245-273 [Journal]
- Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, Lawrence K. Saul
An Introduction to Variational Methods for Graphical Models. [Citation Graph (0, 0)][DBLP] Machine Learning, 1999, v:37, n:2, pp:183-233 [Journal]
- Lawrence K. Saul, Michael I. Jordan
Mixed Memory Markov Models: Decomposing Complex Stochastic Processes as Mixtures of Simpler Ones. [Citation Graph (0, 0)][DBLP] Machine Learning, 1999, v:37, n:1, pp:75-87 [Journal]
- Jinwen Ma, Lei Xu, Michael I. Jordan
Asymptotic Convergence Rate of the EM Algorithm for Gaussian Mixtures. [Citation Graph (0, 0)][DBLP] Neural Computation, 2001, v:12, n:12, pp:2881-2907 [Journal]
- Lawrence K. Saul, Michael I. Jordan
Attractor Dynamics in Feedforward Neural Networks. [Citation Graph (0, 0)][DBLP] Neural Computation, 2000, v:12, n:6, pp:1313-1335 [Journal]
- Padhraic Smyth, David Heckerman, Michael I. Jordan
Probabilistic Independence Networks for Hidden Markov Probability Models. [Citation Graph (0, 0)][DBLP] Neural Computation, 1997, v:9, n:2, pp:227-269 [Journal]
- Michael I. Jordan, Lei Xu
Convergence results for the EM approach to mixtures of experts architectures. [Citation Graph (0, 0)][DBLP] Neural Networks, 1995, v:8, n:9, pp:1409-1431 [Journal]
- Michael I. Jordan, Terrence J. Sejnowski
Graphical Models: Foundations of Neural Computation. [Citation Graph (0, 0)][DBLP] Pattern Anal. Appl., 2002, v:5, n:4, pp:401-402 [Journal]
- XuanLong Nguyen, Michael I. Jordan, Bruno Sinopoli
A kernel-based learning approach to ad hoc sensor network localization. [Citation Graph (0, 0)][DBLP] TOSN, 2005, v:1, n:1, pp:134-152 [Journal]
- Chiranjib Bhattacharyya, L. R. Grate, A. Rizki, D. Radisky, F. J. Molina, Michael I. Jordan, Mina J. Bissell, I. Saira Mian
Simultaneous classification and relevant feature identification in high-dimensional spaces: application to molecular profiling data. [Citation Graph (0, 0)][DBLP] Signal Processing, 2003, v:83, n:4, pp:729-743 [Journal]
- Jon D. McAuliffe, David M. Blei, Michael I. Jordan
Nonparametric empirical Bayes for the Dirichlet process mixture model. [Citation Graph (0, 0)][DBLP] Statistics and Computing, 2006, v:16, n:1, pp:5-14 [Journal]
- Percy Liang, Michael I. Jordan, Benjamin Taskar
A permutation-augmented sampler for DP mixture models. [Citation Graph (0, 0)][DBLP] ICML, 2007, pp:545-552 [Conf]
- Jens Nilsson, Fei Sha, Michael I. Jordan
Regression on manifolds using kernel dimension reduction. [Citation Graph (0, 0)][DBLP] ICML, 2007, pp:697-704 [Conf]
- Ling Huang, XuanLong Nguyen, Minos N. Garofalakis, Joseph M. Hellerstein, Michael I. Jordan, Anthony D. Joseph, Nina Taft
Communication-Efficient Online Detection of Network-Wide Anomalies. [Citation Graph (0, 0)][DBLP] INFOCOM, 2007, pp:134-142 [Conf]
- Ling Huang, XuanLong Nguyen, Minos N. Garofalakis, Michael I. Jordan, Anthony Joseph, Nina Taft
In-Network PCA and Anomaly Detection. [Citation Graph (0, 0)][DBLP] NIPS, 2006, pp:617-624 [Conf]
- Michal Rosen-Zvi, Michael I. Jordan, Alan L. Yuille
The DLR Hierarchy of Approximate Inference. [Citation Graph (0, 0)][DBLP] UAI, 2005, pp:493-500 [Conf]
- Eric P. Xing, Michael I. Jordan
Graph Partition Strategies for Generalized Mean Field Inference. [Citation Graph (0, 0)][DBLP] UAI, 2004, pp:602-610 [Conf]
- Zhihua Zhang, Michael I. Jordan
Bayesian Multicategory Support Vector Machines. [Citation Graph (0, 0)][DBLP] UAI, 2006, pp:- [Conf]
- XuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan
On optimal quantization rules for some sequential decision problems [Citation Graph (0, 0)][DBLP] CoRR, 2006, v:0, n:, pp:- [Journal]
Learning Multiscale Representations of Natural Scenes Using Dirichlet Processes. [Citation Graph (, )][DBLP]
Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. [Citation Graph (, )][DBLP]
Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization. [Citation Graph (, )][DBLP]
Nonnegative Matrix Factorization for Combinatorial Optimization: Spectral Clustering, Graph Matching, and Clique Finding. [Citation Graph (, )][DBLP]
Online System Problem Detection by Mining Patterns of Console Logs. [Citation Graph (, )][DBLP]
Image Denoising with Nonparametric Hidden Markov Trees. [Citation Graph (, )][DBLP]
An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. [Citation Graph (, )][DBLP]
An HDP-HMM for systems with state persistence. [Citation Graph (, )][DBLP]
Learning from measurements in exponential families. [Citation Graph (, )][DBLP]
Mixed Membership Matrix Factorization. [Citation Graph (, )][DBLP]
An Analysis of the Convergence of Graph Laplacians. [Citation Graph (, )][DBLP]
Detecting Large-Scale System Problems by Mining Console Logs. [Citation Graph (, )][DBLP]
On the Consistency of Ranking Algorithms. [Citation Graph (, )][DBLP]
Learning Programs: A Hierarchical Bayesian Approach. [Citation Graph (, )][DBLP]
Multiple Non-Redundant Spectral Clustering Views. [Citation Graph (, )][DBLP]
Fast approximate spectral clustering. [Citation Graph (, )][DBLP]
Agreement-Based Learning. [Citation Graph (, )][DBLP]
Feature Selection Methods for Improving Protein Structure Prediction with Rosetta. [Citation Graph (, )][DBLP]
Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization. [Citation Graph (, )][DBLP]
Spectral Clustering with Perturbed Data. [Citation Graph (, )][DBLP]
High-dimensional support union recovery in multivariate regression. [Citation Graph (, )][DBLP]
Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes. [Citation Graph (, )][DBLP]
DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification. [Citation Graph (, )][DBLP]
Efficient Inference in Phylogenetic InDel Trees. [Citation Graph (, )][DBLP]
Nonparametric Bayesian Learning of Switching Linear Dynamical Systems. [Citation Graph (, )][DBLP]
Posterior Consistency of the Silverman g-prior in Bayesian Model Choice. [Citation Graph (, )][DBLP]
Probabilistic Inference in Queueing Networks. [Citation Graph (, )][DBLP]
Mining Console Logs for Large-Scale System Problem Detection. [Citation Graph (, )][DBLP]
A Flexible and Efficient Algorithm for Regularized Fisher Discriminant Analysis. [Citation Graph (, )][DBLP]
On the Inference of Ancestries in Admixed Populations. [Citation Graph (, )][DBLP]
Combinatorial stochastic processes and nonparametric Bayesian modeling. [Citation Graph (, )][DBLP]
Detecting large-scale system problems by mining console logs. [Citation Graph (, )][DBLP]
The Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features. [Citation Graph (, )][DBLP]
Statistical Machine Learning and Computational Biology. [Citation Graph (, )][DBLP]
The Infinite PCFG Using Hierarchical Dirichlet Processes. [Citation Graph (, )][DBLP]
Characterizing, modeling, and generating workload spikes for stateful services. [Citation Graph (, )][DBLP]
Joint estimation of gene conversion rates and mean conversion tract lengths from population SNP data. [Citation Graph (, )][DBLP]
Active site prediction using evolutionary and structural information. [Citation Graph (, )][DBLP]
On divergences, surrogate loss functions, and decentralized detection [Citation Graph (, )][DBLP]
Estimating divergence functionals and the likelihood ratio by convex risk minimization [Citation Graph (, )][DBLP]
Bayesian Inference in Queueing Networks [Citation Graph (, )][DBLP]
Search in 0.012secs, Finished in 0.023secs
|