Search the dblp DataBase
Michael J. Pazzani :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Michael J. Pazzani , Daniel Billsus Learning and Revising User Profiles: The Identification of Interesting Web Sites. [Citation Graph (2, 0)][DBLP ] Machine Learning, 1997, v:27, n:3, pp:313-331 [Journal ] Michael J. Pazzani , Dennis F. Kibler The Utility of Knowledge in Inductive Learning. [Citation Graph (2, 0)][DBLP ] Machine Learning, 1992, v:9, n:, pp:57-94 [Journal ] Pedro Domingos , Michael J. Pazzani Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier. [Citation Graph (1, 0)][DBLP ] ICML, 1996, pp:105-112 [Conf ] Michael J. Pazzani , Clifford Brunk , Glenn Silverstein A Knowledge-intensive Approach to Learning Relational Concepts. [Citation Graph (1, 0)][DBLP ] ML, 1991, pp:432-436 [Conf ] Michael J. Pazzani Detecting and Correcting Errors of Omission After Explanation-Based Learning. [Citation Graph (1, 0)][DBLP ] IJCAI, 1989, pp:713-718 [Conf ] Michael J. Pazzani , Michael G. Dyer , Margot Flowers Using Prior Learning to Facilitate the Learning of New Causal Theories. [Citation Graph (1, 0)][DBLP ] IJCAI, 1987, pp:277-279 [Conf ] Mark S. Ackerman , Daniel Billsus , Scott Gaffney , Seth Hettich , Gordon Khoo , Dong Joon Kim , Raymond Klefstad , Charles Lowe , Alexius Ludeman , Jack Muramatsu , Kazuo Omori , Michael J. Pazzani , Douglas Semler , Brian Starr , Paul Yap Learning Probabilistic User Profiles: Applications for Finding Interesting Web Sites, Notifying Users of Relevant Changes to Web Pages, and Locating Grant Opportunities. [Citation Graph (1, 0)][DBLP ] AI Magazine, 1997, v:18, n:2, pp:47-56 [Journal ] Pedro Domingos , Michael J. Pazzani Simple Bayesian Classifiers Do Not Assume Independence. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, Vol. 2, 1996, pp:1386- [Conf ] Richard H. Lathrop , Nicholas R. Steffen , Miriam P. Raphael , Sophia Deeds-Rubin , Michael J. Pazzani , Paul J. Cimoch , Darryl M. See , Jeremiah G. Tilles Knowledge-Based Avoidance of Drug-Resistant HIV Mutants. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, 1998, pp:1071-1078 [Conf ] Michael J. Pazzani Interactive Script Instantiation. [Citation Graph (0, 0)][DBLP ] AAAI, 1983, pp:320-326 [Conf ] Michael J. Pazzani Refining the Knowledge Base of a Diagnostic Expert System: An Application of Failure-Driven Learning. [Citation Graph (0, 0)][DBLP ] AAAI, 1986, pp:1029-1035 [Conf ] Michael J. Pazzani , Clifford Brunk Finding Accurate Frontiers: A Knowledge-Intensive Approach to Relational Learning. [Citation Graph (0, 0)][DBLP ] AAAI, 1993, pp:328-334 [Conf ] Michael J. Pazzani , Michael G. Dyer , Margot Flowers The Role of Prior Causal Theories in Generalization. [Citation Graph (0, 0)][DBLP ] AAAI, 1986, pp:545-550 [Conf ] Michael J. Pazzani , Jack Muramatsu , Daniel Billsus Syskill & Webert: Identifying Interesting Web Sites. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, Vol. 1, 1996, pp:54-61 [Conf ] Daniel Billsus , Michael J. Pazzani A Personal News Agent That Talks, Learns and Explains. [Citation Graph (0, 0)][DBLP ] Agents, 1999, pp:268-275 [Conf ] Michael J. Pazzani , Daniel Billsus Adaptive Web Site Agents. [Citation Graph (0, 0)][DBLP ] Agents, 1999, pp:394-395 [Conf ] Subramani Mani , Malcolm B. Dick , Michael J. Pazzani , Evelyn L. Teng , Daniel Kempler , I. Maribell Taussig Refinement of Neuro-psychological Tests for Dementia Screening in a Cross Cultural Population Using Machine Learning. [Citation Graph (0, 0)][DBLP ] AIMDM, 1999, pp:326-335 [Conf ] Subramani Mani , Michael J. Pazzani , John West Knowledge Discovery from a Breast Cancer Database. [Citation Graph (0, 0)][DBLP ] AIME, 1997, pp:130-133 [Conf ] William Rodman Shankle , Subramani Mani , Michael J. Pazzani , Padhraic Smyth Detecting Very Early Stages of Dementia from Normal Aging with Machine Learning Methods. [Citation Graph (0, 0)][DBLP ] AIME, 1997, pp:73-85 [Conf ] Michael J. Pazzani , Carl Engelman Knowledge Based Question Answering. [Citation Graph (0, 0)][DBLP ] ANLP, 1983, pp:73-80 [Conf ] Geoffrey I. Webb , Michael J. Pazzani Adjusted Probability Naive Bayesian Induction. [Citation Graph (0, 0)][DBLP ] Australian Joint Conference on Artificial Intelligence, 1998, pp:285-295 [Conf ] Michael J. Pazzani Conceptual Analysis of Garden-Path Sentences. [Citation Graph (0, 0)][DBLP ] COLING, 1984, pp:486-490 [Conf ] Michael J. Pazzani Learning with Globally Predictive Tests. [Citation Graph (0, 0)][DBLP ] Discovery Science, 1998, pp:220-231 [Conf ] Michael J. Pazzani Integrating Explanation-Based and Empirical Learning Methods in OCCAM. [Citation Graph (0, 0)][DBLP ] EWSL, 1988, pp:147-165 [Conf ] Eamonn J. Keogh , Selina Chu , David Hart , Michael J. Pazzani An Online Algorithm for Segmenting Time Series. [Citation Graph (0, 0)][DBLP ] ICDM, 2001, pp:289-296 [Conf ] Stephen D. Bay , Michael J. Pazzani Characterizing Model Erros and Differences. [Citation Graph (0, 0)][DBLP ] ICML, 2000, pp:49-56 [Conf ] Daniel Billsus , Michael J. Pazzani Learning Collaborative Information Filters. [Citation Graph (0, 0)][DBLP ] ICML, 1998, pp:46-54 [Conf ] Clifford Brunk , Michael J. Pazzani An Investigation of Noise-Tolerant Relational Concept Learning Algorithms. [Citation Graph (0, 0)][DBLP ] ML, 1991, pp:389-393 [Conf ] Clifford Brunk , Michael J. Pazzani A Lexical Based Semantic Bias for Theory Revision. [Citation Graph (0, 0)][DBLP ] ICML, 1995, pp:81-89 [Conf ] Daniel S. Hirschberg , Michael J. Pazzani Average Case Analysis of Learning kappa-CNF Concepts. [Citation Graph (0, 0)][DBLP ] ML, 1992, pp:206-211 [Conf ] Patrick M. Murphy , Michael J. Pazzani Constructive Induction of M-of-N Terms. [Citation Graph (0, 0)][DBLP ] ML, 1991, pp:183-187 [Conf ] Patrick M. Murphy , Michael J. Pazzani Revision of Production System Rule-Bases. [Citation Graph (0, 0)][DBLP ] ICML, 1994, pp:199-207 [Conf ] Michael J. Pazzani Integrated Learning with Incorrect and Incomplete Theories. [Citation Graph (0, 0)][DBLP ] ML, 1988, pp:291-297 [Conf ] Michael J. Pazzani Explanation-Based Learning with Week Domain Theories. [Citation Graph (0, 0)][DBLP ] ML, 1989, pp:72-74 [Conf ] Michael J. Pazzani , Christopher J. Merz , Patrick M. Murphy , Kamal Ali , Timothy Hume , Clifford Brunk Reducing Misclassification Costs. [Citation Graph (0, 0)][DBLP ] ICML, 1994, pp:217-225 [Conf ] Michael J. Pazzani , Wendy Sarrett Average Case Analysis of Conjunctive Learning Algorithms. [Citation Graph (0, 0)][DBLP ] ML, 1990, pp:339-347 [Conf ] Wendy Sarrett , Michael J. Pazzani One-Sided Algorithms for Integrating Empirical and Explanation-Based Learning. [Citation Graph (0, 0)][DBLP ] ML, 1989, pp:26-28 [Conf ] Glenn Silverstein , Michael J. Pazzani Relational Clichés: Constraining Induction During Relational Learning. [Citation Graph (0, 0)][DBLP ] ML, 1991, pp:203-207 [Conf ] Takefumi Yamazaki , Michael J. Pazzani , Christopher J. Merz Learning Hierarchies from Ambiguous Natural Language Data. [Citation Graph (0, 0)][DBLP ] ICML, 1995, pp:575-583 [Conf ] Kamal Ali , Clifford Brunk , Michael J. Pazzani On Learning Multiple Descriptions of a Concept. [Citation Graph (0, 0)][DBLP ] ICTAI, 1994, pp:476-483 [Conf ] Christopher J. Merz , Michael J. Pazzani Parameter Tuning for the MAX Expert System. [Citation Graph (0, 0)][DBLP ] ICTAI, 1994, pp:632-639 [Conf ] Michael J. Pazzani Machine Learning for Personalized Wireless Portals. [Citation Graph (0, 0)][DBLP ] ICTAI, 2004, pp:3- [Conf ] Kamal M. Ali , Michael J. Pazzani HYDRA: A Noise-tolerant Relational Concept Learning Algorithm. [Citation Graph (0, 0)][DBLP ] IJCAI, 1993, pp:1064-1071 [Conf ] Michael J. Pazzani , Michael G. Dyer A Comparison of Concept Identification in Human Learning and Network Learning with the Generalized Delta Rule. [Citation Graph (0, 0)][DBLP ] IJCAI, 1987, pp:147-150 [Conf ] James Wogulis , Michael J. Pazzani A Methodology for Evaluating Theory Revision Systems: Results with Audrey II. [Citation Graph (0, 0)][DBLP ] IJCAI, 1993, pp:1128-1134 [Conf ] Takefumi Yamazaki , Michael J. Pazzani , Christopher J. Merz Acquiring and updating hierarchical knowledge for machine translation based on a clustering technique. [Citation Graph (0, 0)][DBLP ] Learning for Natural Language Processing, 1995, pp:329-342 [Conf ] Daniel Billsus , Michael J. Pazzani , James Chen A learning agent for wireless news access. [Citation Graph (0, 0)][DBLP ] Intelligent User Interfaces, 2000, pp:33-36 [Conf ] Michael J. Pazzani Representation of electronic mail filtering profiles: a user study. [Citation Graph (0, 0)][DBLP ] Intelligent User Interfaces, 2000, pp:202-206 [Conf ] Stephen D. Bay , Michael J. Pazzani Detecting Change in Categorical Data: Mining Contrast Sets. [Citation Graph (0, 0)][DBLP ] KDD, 1999, pp:302-306 [Conf ] Seth Hettich , Michael J. Pazzani Mining for proposal reviewers: lessons learned at the national science foundation. [Citation Graph (0, 0)][DBLP ] KDD, 2006, pp:862-871 [Conf ] Eamonn J. Keogh , Selina Chu , Michael J. Pazzani Ensemble-index: a new approach to indexing large databases. [Citation Graph (0, 0)][DBLP ] KDD, 2001, pp:117-125 [Conf ] Eamonn J. Keogh , Michael J. Pazzani Scaling up dynamic time warping for datamining applications. [Citation Graph (0, 0)][DBLP ] KDD, 2000, pp:285-289 [Conf ] Eamonn J. Keogh , Michael J. Pazzani An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback. [Citation Graph (0, 0)][DBLP ] KDD, 1998, pp:239-243 [Conf ] Michael J. Pazzani An Iterative Improvement Approach for the Discretization of Numeric Attributes in Bayesian Classifiers. [Citation Graph (0, 0)][DBLP ] KDD, 1995, pp:228-233 [Conf ] Michael J. Pazzani , Subramani Mani , William Rodman Shankle Beyond Concise and Colorful: Learning Intelligible Rules. [Citation Graph (0, 0)][DBLP ] KDD, 1997, pp:235-238 [Conf ] Michael J. Pazzani Creating High Level Knowledge Structures from Simple Elements. [Citation Graph (0, 0)][DBLP ] Knowledge Representation and Organization in Machine Learning, 1987, pp:258-288 [Conf ] Giovanni Semeraro , Floriana Esposito , Donato Malerba , Clifford Brunk , Michael J. Pazzani Avoiding Non-Termination when Learning Logical Programs: A Case Study with FOIL and FOCL. [Citation Graph (0, 0)][DBLP ] LOPSTR, 1994, pp:183-198 [Conf ] Christopher J. Merz , Michael J. Pazzani Combining Neural Network Regression Estimates with Regularized Linear Weights. [Citation Graph (0, 0)][DBLP ] NIPS, 1996, pp:564-570 [Conf ] Eamonn J. Keogh , Michael J. Pazzani A Simple Dimensionality Reduction Technique for Fast Similarity Search in Large Time Series Databases. [Citation Graph (0, 0)][DBLP ] PAKDD, 2000, pp:122-133 [Conf ] Eamonn J. Keogh , Michael J. Pazzani Scaling up Dynamic Time Warping to Massive Dataset. [Citation Graph (0, 0)][DBLP ] PKDD, 1999, pp:1-11 [Conf ] Koji Miyahara , Michael J. Pazzani Collaborative Filtering with the Simple Bayesian Classifier. [Citation Graph (0, 0)][DBLP ] PRICAI, 2000, pp:679-689 [Conf ] Michael J. Pazzani Commercial Applications of Machine Learning for Personalized Wireless Portals. [Citation Graph (0, 0)][DBLP ] PRICAI, 2002, pp:1-5 [Conf ] Selina Chu , Eamonn J. Keogh , David Hart , Michael J. Pazzani Iterative Deepening Dynamic Time Warping for Time Series. [Citation Graph (0, 0)][DBLP ] SDM, 2002, pp:- [Conf ] Eamonn J. Keogh , Michael J. Pazzani Relevance Feedback Retrieval of Time Series Data. [Citation Graph (0, 0)][DBLP ] SIGIR, 1999, pp:183-190 [Conf ] Eamonn J. Keogh , Kaushik Chakrabarti , Sharad Mehrotra , Michael J. Pazzani Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. [Citation Graph (0, 0)][DBLP ] SIGMOD Conference, 2001, pp:151-162 [Conf ] Eamonn J. Keogh , Michael J. Pazzani An Indexing Scheme for Fast Similarity Search in Large Time Series Databases. [Citation Graph (0, 0)][DBLP ] SSDBM, 1999, pp:56-67 [Conf ] Michael J. Pazzani Adaptive Interfaces for Ubiquitous Web Access. [Citation Graph (0, 0)][DBLP ] User Modeling, 2003, pp:1- [Conf ] George Buchanan , Sarah Farrant , Matt Jones , Harold W. Thimbleby , Gary Marsden , Michael J. Pazzani Improving mobile internet usability. [Citation Graph (0, 0)][DBLP ] WWW, 2001, pp:673-680 [Conf ] Michael J. Pazzani , Daniel Billsus Adaptive Web Site Agents. [Citation Graph (0, 0)][DBLP ] Autonomous Agents and Multi-Agent Systems, 2002, v:5, n:2, pp:205-218 [Journal ] Richard H. Lathrop , Nicholas R. Steffen , Miriam P. Raphael , Sophia Deeds-Rubin , Michael J. Pazzani , Paul J. Cimoch , Darryl M. See , Jeremiah G. Tilles Knowledge-Based Avoidance of Drug-Resistant HIV Mutants. [Citation Graph (0, 0)][DBLP ] AI Magazine, 1999, v:20, n:1, pp:13-25 [Journal ] Michael J. Pazzani A Framework for Collaborative, Content-Based and Demographic Filtering. [Citation Graph (0, 0)][DBLP ] Artif. Intell. Rev., 1999, v:13, n:5-6, pp:393-408 [Journal ] Subramani Mani , William Rodman Shankle , Malcolm B. Dick , Michael J. Pazzani Two-Stage Machine Learning model for guideline development. [Citation Graph (0, 0)][DBLP ] Artificial Intelligence in Medicine, 1999, v:16, n:1, pp:51-71 [Journal ] Serge Abiteboul , Rakesh Agrawal , Philip A. Bernstein , Michael J. Carey , Stefano Ceri , W. Bruce Croft , David J. DeWitt , Michael J. Franklin , Hector Garcia-Molina , Dieter Gawlick , Jim Gray , Laura M. Haas , Alon Y. Halevy , Joseph M. Hellerstein , Yannis E. Ioannidis , Martin L. Kersten , Michael J. Pazzani , Michael Lesk , David Maier , Jeffrey F. Naughton , Hans-Jörg Schek , Timos K. Sellis , Avi Silberschatz , Michael Stonebraker , Richard T. Snodgrass , Jeffrey D. Ullman , Gerhard Weikum , Jennifer Widom , Stanley B. Zdonik The Lowell database research self-assessment. [Citation Graph (0, 0)][DBLP ] Commun. ACM, 2005, v:48, n:5, pp:111-118 [Journal ] Daniel Billsus , Clifford Brunk , Craig Evans , Brian Gladish , Michael J. Pazzani Adaptive interfaces for ubiquitous web access. [Citation Graph (0, 0)][DBLP ] Commun. ACM, 2002, v:45, n:5, pp:34-38 [Journal ] Michael J. Pazzani A Computational Theory of Learning Causal Relationships. [Citation Graph (0, 0)][DBLP ] Cognitive Science, 1991, v:15, n:3, pp:401-424 [Journal ] Serge Abiteboul , Rakesh Agrawal , Philip A. Bernstein , Michael J. Carey , Stefano Ceri , W. Bruce Croft , David J. DeWitt , Michael J. Franklin , Hector Garcia-Molina , Dieter Gawlick , Jim Gray , Laura M. Haas , Alon Y. Halevy , Joseph M. Hellerstein , Yannis E. Ioannidis , Martin L. Kersten , Michael J. Pazzani , Michael Lesk , David Maier , Jeffrey F. Naughton , Hans-Jörg Schek , Timos K. Sellis , Avi Silberschatz , Michael Stonebraker , Richard T. Snodgrass , Jeffrey D. Ullman , Gerhard Weikum , Jennifer Widom , Stanley B. Zdonik The Lowell Database Research Self Assessment [Citation Graph (0, 0)][DBLP ] CoRR, 2003, v:0, n:, pp:- [Journal ] Stephen D. Bay , Michael J. Pazzani Detecting Group Differences: Mining Contrast Sets. [Citation Graph (0, 0)][DBLP ] Data Min. Knowl. Discov., 2001, v:5, n:3, pp:213-246 [Journal ] Christopher J. Merz , Michael J. Pazzani , Andrea Pohoreckyj Danyluk Tuning Numeric Parameters to Troubleshoot a Telephone-Network Loop. [Citation Graph (0, 0)][DBLP ] IEEE Expert, 1996, v:11, n:1, pp:44-49 [Journal ] Michael J. Pazzani Knowledge discovery from data? [Citation Graph (0, 0)][DBLP ] IEEE Intelligent Systems, 2000, v:15, n:2, pp:10-13 [Journal ] Eamonn J. Keogh , Michael J. Pazzani Learning the Structure of Augmented Bayesian Classifiers. [Citation Graph (0, 0)][DBLP ] International Journal on Artificial Intelligence Tools, 2002, v:11, n:4, pp:587-601 [Journal ] Michael J. Pazzani Explanation-Based Learning for Knowledge-Based Systems. [Citation Graph (0, 0)][DBLP ] International Journal of Man-Machine Studies, 1987, v:26, n:4, pp:413-433 [Journal ] Patrick M. Murphy , Michael J. Pazzani Exploring the Decision Forest: An Empirical Investigation of Occam's Razor in Decision Tree Induction. [Citation Graph (0, 0)][DBLP ] J. Artif. Intell. Res. (JAIR), 1994, v:1, n:, pp:257-275 [Journal ] Richard H. Lathrop , Michael J. Pazzani Combinatorial Optimization in Rapidly Mutating Drug-Resistant Viruses. [Citation Graph (0, 0)][DBLP ] J. Comb. Optim., 1999, v:3, n:2-3, pp:301-320 [Journal ] Eamonn J. Keogh , Kaushik Chakrabarti , Michael J. Pazzani , Sharad Mehrotra Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. [Citation Graph (0, 0)][DBLP ] Knowl. Inf. Syst., 2001, v:3, n:3, pp:263-286 [Journal ] Kamal M. Ali , Michael J. Pazzani Error Reduction through Learning Multiple Descriptions. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1996, v:24, n:3, pp:173-202 [Journal ] Pedro Domingos , Michael J. Pazzani On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1997, v:29, n:2-3, pp:103-130 [Journal ] Michael J. Pazzani A Reply to Cohen's Book Review of Creating a Memory of Causal Relationships. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1993, v:10, n:, pp:185-190 [Journal ] Michael J. Pazzani Learning Causal Patterns: Making a Transition from Data-Driven to Theory-Driven Learning. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1993, v:11, n:, pp:173-194 [Journal ] Michael J. Pazzani Guest Editor's Introduction. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1994, v:16, n:1-2, pp:7-9 [Journal ] Michael J. Pazzani Review of ``Inductive Logic Programming: Techniques and Applications'' by Nada Lavrac, Saso Dzeroski. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1996, v:23, n:1, pp:103-108 [Journal ] Christopher J. Merz , Michael J. Pazzani A Principal Components Approach to Combining Regression Estimates. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1999, v:36, n:1-2, pp:9-32 [Journal ] Michael J. Pazzani , Wendy Sarrett A Framework for Average Case Analysis of Conjunctive Learning Algorithms. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1992, v:9, n:, pp:349-372 [Journal ] Michael J. Pazzani Learning with Globally Predictive Tests. [Citation Graph (0, 0)][DBLP ] New Generation Comput., 2000, v:18, n:1, pp:28-38 [Journal ] Ian Soboroff , Charles K. Nicholas , Michael J. Pazzani Workshop on Recommender Systems: Algorithms and Evaluation. [Citation Graph (0, 0)][DBLP ] SIGIR Forum, 1999, v:33, n:1, pp:36-43 [Journal ] Stephen D. Bay , Dennis F. Kibler , Michael J. Pazzani , Padhraic Smyth The UCI KDD Archive of Large Data Sets for Data Mining Research and Experimentation. [Citation Graph (0, 0)][DBLP ] SIGKDD Explorations, 2000, v:2, n:2, pp:81-85 [Journal ] Kaushik Chakrabarti , Eamonn J. Keogh , Sharad Mehrotra , Michael J. Pazzani Locally adaptive dimensionality reduction for indexing large time series databases. [Citation Graph (0, 0)][DBLP ] ACM Trans. Database Syst., 2002, v:27, n:2, pp:188-228 [Journal ] Daniel Billsus , Michael J. Pazzani User Modeling for Adaptive News Access. [Citation Graph (0, 0)][DBLP ] User Model. User-Adapt. Interact., 2000, v:10, n:2-3, pp:147-180 [Journal ] Geoffrey I. Webb , Michael J. Pazzani , Daniel Billsus Machine Learning for User Modeling. [Citation Graph (0, 0)][DBLP ] User Model. User-Adapt. Interact., 2001, v:11, n:1-2, pp:19-29 [Journal ] Daniel Billsus , Michael J. Pazzani Adaptive News Access. [Citation Graph (0, 0)][DBLP ] The Adaptive Web, 2007, pp:550-570 [Conf ] Michael J. Pazzani , Daniel Billsus Content-Based Recommendation Systems. [Citation Graph (0, 0)][DBLP ] The Adaptive Web, 2007, pp:325-341 [Conf ] An energy-efficient mobile recommender system. [Citation Graph (, )][DBLP ] The Do-I-Care Agent: Effective Social Discovery and Filtering on the Web. [Citation Graph (, )][DBLP ] Search in 0.037secs, Finished in 0.042secs