Search the dblp DataBase
Richard S. Sutton :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Richard S. Sutton Learning to Predict by the Methods of Temporal Differences. [Citation Graph (1, 0)][DBLP ] Machine Learning, 1988, v:3, n:, pp:9-44 [Journal ] Alborz Geramifard , Michael Bowling , Richard S. Sutton Incremental Least-Squares Temporal Difference Learning. [Citation Graph (0, 0)][DBLP ] AAAI, 2006, pp:- [Conf ] Richard S. Sutton Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta. [Citation Graph (0, 0)][DBLP ] AAAI, 1992, pp:171-176 [Conf ] Doina Precup , Richard S. Sutton , Satinder P. Singh Theoretical Results on Reinforcement Learning with Temporally Abstract Options. [Citation Graph (0, 0)][DBLP ] ECML, 1998, pp:382-393 [Conf ] Richard S. Sutton Open Theoretical Questions in Reinforcement Learning. [Citation Graph (0, 0)][DBLP ] EuroCOLT, 1999, pp:11-17 [Conf ] Richard S. Sutton On the Significance of Markov Decision Processes. [Citation Graph (0, 0)][DBLP ] ICANN, 1997, pp:273-282 [Conf ] Doina Precup , Richard S. Sutton Exponentiated Gradient Methods for Reinforcement Learning. [Citation Graph (0, 0)][DBLP ] ICML, 1997, pp:272-277 [Conf ] Doina Precup , Richard S. Sutton , Sanjoy Dasgupta Off-Policy Temporal Difference Learning with Function Approximation. [Citation Graph (0, 0)][DBLP ] ICML, 2001, pp:417-424 [Conf ] Doina Precup , Richard S. Sutton , Satinder P. Singh Eligibility Traces for Off-Policy Policy Evaluation. [Citation Graph (0, 0)][DBLP ] ICML, 2000, pp:759-766 [Conf ] Peter Stone , Richard S. Sutton Scaling Reinforcement Learning toward RoboCup Soccer. [Citation Graph (0, 0)][DBLP ] ICML, 2001, pp:537-544 [Conf ] Richard S. Sutton Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. [Citation Graph (0, 0)][DBLP ] ML, 1990, pp:216-224 [Conf ] Richard S. Sutton Planning by Incremental Dynamic Programming. [Citation Graph (0, 0)][DBLP ] ML, 1991, pp:353-357 [Conf ] Richard S. Sutton TD Models: Modeling the World at a Mixture of Time Scales. [Citation Graph (0, 0)][DBLP ] ICML, 1995, pp:531-539 [Conf ] Richard S. Sutton , Christopher J. Matheus Learning Polynomial Functions by Feature Construction. [Citation Graph (0, 0)][DBLP ] ML, 1991, pp:208-212 [Conf ] Richard S. Sutton , Doina Precup , Satinder P. Singh Intra-Option Learning about Temporally Abstract Actions. [Citation Graph (0, 0)][DBLP ] ICML, 1998, pp:556-564 [Conf ] Richard S. Sutton , Steven D. Whitehead Online Learning with Random Representations. [Citation Graph (0, 0)][DBLP ] ICML, 1993, pp:314-321 [Conf ] Brian Tanner , Richard S. Sutton TD(lambda) networks: temporal-difference networks with eligibility traces. [Citation Graph (0, 0)][DBLP ] ICML, 2005, pp:888-895 [Conf ] Eddie J. Rafols , Mark B. Ring , Richard S. Sutton , Brian Tanner Using Predictive Representations to Improve Generalization in Reinforcement Learning. [Citation Graph (0, 0)][DBLP ] IJCAI, 2005, pp:835-840 [Conf ] Oliver G. Selfridge , Richard S. Sutton , Andrew G. Barto Training and Tracking in Robotics. [Citation Graph (0, 0)][DBLP ] IJCAI, 1985, pp:670-672 [Conf ] Brian Tanner , Richard S. Sutton Temporal-Difference Networks with History. [Citation Graph (0, 0)][DBLP ] IJCAI, 2005, pp:865-870 [Conf ] David Silver , Richard S. Sutton , Martin Müller 0003 Reinforcement Learning of Local Shape in the Game of Go. [Citation Graph (0, 0)][DBLP ] IJCAI, 2007, pp:1053-1058 [Conf ] Andrew G. Barto , Richard S. Sutton , Christopher J. C. H. Watkins Sequential Decision Probelms and Neural Networks. [Citation Graph (0, 0)][DBLP ] NIPS, 1989, pp:686-693 [Conf ] Michael L. Littman , Richard S. Sutton , Satinder P. Singh Predictive Representations of State. [Citation Graph (0, 0)][DBLP ] NIPS, 2001, pp:1555-1561 [Conf ] Robert Moll , Andrew G. Barto , Theodore J. Perkins , Richard S. Sutton Learning Instance-Independent Value Functions to Enhance Local Search. [Citation Graph (0, 0)][DBLP ] NIPS, 1998, pp:1017-1023 [Conf ] Doina Precup , Richard S. Sutton Multi-time Models for Temporally Abstract Planning. [Citation Graph (0, 0)][DBLP ] NIPS, 1997, pp:- [Conf ] Doina Precup , Richard S. Sutton , Cosmin Paduraru , Anna Koop , Satinder P. Singh Off-policy Learning with Options and Recognizers. [Citation Graph (0, 0)][DBLP ] NIPS, 2005, pp:- [Conf ] Terence D. Sanger , Richard S. Sutton , Christopher J. Matheus Iterative Construction of Sparse Polynomial Approximations. [Citation Graph (0, 0)][DBLP ] NIPS, 1991, pp:1064-1071 [Conf ] Richard S. Sutton Integrated Modeling and Control Based on Reinforcement Learning. [Citation Graph (0, 0)][DBLP ] NIPS, 1990, pp:471-478 [Conf ] Richard S. Sutton Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding. [Citation Graph (0, 0)][DBLP ] NIPS, 1995, pp:1038-1044 [Conf ] Richard S. Sutton , David A. McAllester , Satinder P. Singh , Yishay Mansour Policy Gradient Methods for Reinforcement Learning with Function Approximation. [Citation Graph (0, 0)][DBLP ] NIPS, 1999, pp:1057-1063 [Conf ] Richard S. Sutton , Eddie J. Rafols , Anna Koop Temporal Abstraction in Temporal-difference Networks. [Citation Graph (0, 0)][DBLP ] NIPS, 2005, pp:- [Conf ] Richard S. Sutton , Satinder P. Singh , Doina Precup , Balaraman Ravindran Improved Switching among Temporally Abstract Actions. [Citation Graph (0, 0)][DBLP ] NIPS, 1998, pp:1066-1072 [Conf ] Richard S. Sutton , Brian Tanner Temporal-Difference Networks. [Citation Graph (0, 0)][DBLP ] NIPS, 2004, pp:- [Conf ] Peter Stone , Richard S. Sutton Keepaway Soccer: A Machine Learning Testbed. [Citation Graph (0, 0)][DBLP ] RoboCup, 2001, pp:214-223 [Conf ] Peter Stone , Richard S. Sutton , Satinder P. Singh Reinforcement Learning for 3 vs. 2 Keepaway [Citation Graph (0, 0)][DBLP ] RoboCup, 2000, pp:249-258 [Conf ] Richard S. Sutton Reinforcement Learning: Past, Present and Future. [Citation Graph (0, 0)][DBLP ] SEAL, 1998, pp:195-197 [Conf ] Richard S. Sutton , Doina Precup , Satinder P. Singh Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning. [Citation Graph (0, 0)][DBLP ] Artif. Intell., 1999, v:112, n:1-2, pp:181-211 [Journal ] Satinder P. Singh , Richard S. Sutton Reinforcement Learning with Replacing Eligibility Traces. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1996, v:22, n:1-3, pp:123-158 [Journal ] Richard S. Sutton Dyna, an Integrated Architecture for Learning, Planning, and Reacting. [Citation Graph (0, 0)][DBLP ] SIGART Bulletin, 1991, v:2, n:4, pp:160-163 [Journal ] Richard S. Sutton , Anna Koop , David Silver On the role of tracking in stationary environments. [Citation Graph (0, 0)][DBLP ] ICML, 2007, pp:871-878 [Conf ] Alborz Geramifard , Michael Bowling , Martin Zinkevich , Richard S. Sutton iLSTD: Eligibility Traces and Convergence Analysis. [Citation Graph (0, 0)][DBLP ] NIPS, 2006, pp:441-448 [Conf ] Sample-based learning and search with permanent and transient memories. [Citation Graph (, )][DBLP ] Fast gradient-descent methods for temporal-difference learning with linear function approximation. [Citation Graph (, )][DBLP ] Toward Off-Policy Learning Control with Function Approximation. [Citation Graph (, )][DBLP ] Incremental Natural Actor-Critic Algorithms. [Citation Graph (, )][DBLP ] A computational model of hippocampal function in trace conditioning. [Citation Graph (, )][DBLP ] A Convergent O(n) Temporal-difference Algorithm for Off-policy Learning with Linear Function Approximation. [Citation Graph (, )][DBLP ] Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping. [Citation Graph (, )][DBLP ] Agent Learning using Action-Dependent Learning Rates in Computer Role-Playing Games. [Citation Graph (, )][DBLP ] Search in 0.021secs, Finished in 0.025secs