Search the dblp DataBase
Philip M. Long :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Philip Gross , Albert Boulanger , Marta Arias , David L. Waltz , Philip M. Long , Charles Lawson , Roger Anderson , Matthew Koenig , Mark Mastrocinque , William Fairechio , John A. Johnson , Serena Lee , Frank Doherty , Arthur Kressner Predicting Electricity Distribution Feeder Failures Using Machine Learning Susceptibility Analysis. [Citation Graph (0, 0)][DBLP ] AAAI, 2006, pp:- [Conf ] Philip M. Long Minimum Majority Classification and Boosting. [Citation Graph (0, 0)][DBLP ] AAAI/IAAI, 2002, pp:181-186 [Conf ] José L. Balcázar , Philip M. Long , Frank Stephan Editors' Introduction. [Citation Graph (0, 0)][DBLP ] ALT, 2006, pp:1-9 [Conf ] Philip M. Long Improved Bounds about On-line Learning of Smooth Functions of a Single Variable. [Citation Graph (0, 0)][DBLP ] ALT, 1996, pp:26-36 [Conf ] Rakesh D. Barve , Philip M. Long On the Complexity of Learning from Drifting Distributions. [Citation Graph (0, 0)][DBLP ] COLT, 1996, pp:122-130 [Conf ] Shai Ben-David , Nicolò Cesa-Bianchi , Philip M. Long Characterizations of Learnability for Classes of {O, ..., n }-Valued Functions. [Citation Graph (0, 0)][DBLP ] COLT, 1992, pp:333-340 [Conf ] Shai Ben-David , Nadav Eiron , Philip M. Long On the Difficulty of Approximately Maximizing Agreements. [Citation Graph (0, 0)][DBLP ] COLT, 2000, pp:266-274 [Conf ] Shai Ben-David , Philip M. Long , Yishay Mansour Agnostic Boosting. [Citation Graph (0, 0)][DBLP ] COLT/EuroCOLT, 2001, pp:507-516 [Conf ] Nicolò Cesa-Bianchi , Philip M. Long , Manfred K. Warmuth Worst-Case Quadratic Loss Bounds for a Generalization of the Widrow-Hoff Rule. [Citation Graph (0, 0)][DBLP ] COLT, 1993, pp:429-438 [Conf ] Peter Auer , Philip M. Long , Wolfgang Maass , Gerhard J. Woeginger On the Complexity of Function Learning. [Citation Graph (0, 0)][DBLP ] COLT, 1993, pp:392-401 [Conf ] Peter L. Bartlett , Philip M. Long More Theorems about Scale-sensitive Dimensions and Learning. [Citation Graph (0, 0)][DBLP ] COLT, 1995, pp:392-401 [Conf ] Peter L. Bartlett , Philip M. Long , Robert C. Williamson Fat-Shattering and the Learnability of Real-Valued Functions. [Citation Graph (0, 0)][DBLP ] COLT, 1994, pp:299-310 [Conf ] Sanjoy Dasgupta , Philip M. Long Boosting with Diverse Base Classifiers. [Citation Graph (0, 0)][DBLP ] COLT, 2003, pp:273-287 [Conf ] Ofer Dekel , Philip M. Long , Yoram Singer Online Multitask Learning. [Citation Graph (0, 0)][DBLP ] COLT, 2006, pp:453-467 [Conf ] David P. Helmbold , Philip M. Long Tracking Drifting Concepts Using Random Examples. [Citation Graph (0, 0)][DBLP ] COLT, 1991, pp:13-23 [Conf ] Don Kimber , Philip M. Long The Learning Complexity of Smooth Functions of a Single Variable. [Citation Graph (0, 0)][DBLP ] COLT, 1992, pp:153-159 [Conf ] Wee Sun Lee , Philip M. Long A Theoretical Analysis of Query Selection for Collaborative Filtering. [Citation Graph (0, 0)][DBLP ] COLT/EuroCOLT, 2001, pp:517-528 [Conf ] Nick Littlestone , Philip M. Long On-Line Learning with Linear Loss Constraints. [Citation Graph (0, 0)][DBLP ] COLT, 1993, pp:412-421 [Conf ] Philip M. Long On Agnostic Learning with {0, *, 1}-Valued and Real-Valued Hypotheses. [Citation Graph (0, 0)][DBLP ] COLT/EuroCOLT, 2001, pp:289-302 [Conf ] Philip M. Long On-line Evaluation and Prediction using Linear Functions. [Citation Graph (0, 0)][DBLP ] COLT, 1997, pp:21-31 [Conf ] Philip M. Long The complexity of learning according to two models of a drifting environment. [Citation Graph (0, 0)][DBLP ] COLT, 1998, pp:116-125 [Conf ] Philip M. Long On the Sample Complexity of Learning Functions with Bounded Variation. [Citation Graph (0, 0)][DBLP ] COLT, 1998, pp:126-133 [Conf ] Philip M. Long , Rocco A. Servedio Martingale Boosting. [Citation Graph (0, 0)][DBLP ] COLT, 2005, pp:79-94 [Conf ] Philip M. Long , Rocco A. Servedio Discriminative Learning Can Succeed Where Generative Learning Fails. [Citation Graph (0, 0)][DBLP ] COLT, 2006, pp:319-334 [Conf ] Philip M. Long , Lei Tan PAC Learning Axis-Aligned Rectangles with Respect to Product Distributions from Multiple-Instance Examples. [Citation Graph (0, 0)][DBLP ] COLT, 1996, pp:228-234 [Conf ] Philip M. Long , Manfred K. Warmuth Composite Geometric Concepts and Polynomial Predictability. [Citation Graph (0, 0)][DBLP ] COLT, 1990, pp:273-287 [Conf ] Dzung T. Hoang , Philip M. Long , Jeffrey Scott Vitter Explicit Bit Minimization for Motion-Compensated Video Coding. [Citation Graph (0, 0)][DBLP ] Data Compression Conference, 1994, pp:175-184 [Conf ] Dzung T. Hoang , Philip M. Long , Jeffrey Scott Vitter Multiple-Dictionary Coding Using Partial Matching. [Citation Graph (0, 0)][DBLP ] Data Compression Conference, 1995, pp:272-281 [Conf ] Dzung T. Hoang , Philip M. Long , Jeffrey Scott Vitter Efficient Cost Measures for Motion Compensation at Low Bit Rates (Extended Abstract). [Citation Graph (0, 0)][DBLP ] Data Compression Conference, 1996, pp:102-111 [Conf ] Philip M. Long , Apostol Natsev , Jeffrey Scott Vitter Text Compression Via Alphabet Re-Representation. [Citation Graph (0, 0)][DBLP ] Data Compression Conference, 1997, pp:161-170 [Conf ] David P. Helmbold , Nick Littlestone , Philip M. Long Apple Tasting and Nearly One-Sided Learning [Citation Graph (0, 0)][DBLP ] FOCS, 1992, pp:493-502 [Conf ] Naoki Abe , Philip M. Long Associative Reinforcement Learning using Linear Probabilistic Concepts. [Citation Graph (0, 0)][DBLP ] ICML, 1999, pp:3-11 [Conf ] P. Krishnan , Philip M. Long , Jeffrey Scott Vitter Learning to Make Rent-to-Buy Decisions with Systems Applications. [Citation Graph (0, 0)][DBLP ] ICML, 1995, pp:233-330 [Conf ] Philip M. Long , Vinay Varadan , Sarah Gilman , Mark Treshock , Rocco A. Servedio Unsupervised evidence integration. [Citation Graph (0, 0)][DBLP ] ICML, 2005, pp:521-528 [Conf ] Yi Li , Philip M. Long The Relaxed Online Maximum Margin Algorithm. [Citation Graph (0, 0)][DBLP ] NIPS, 1999, pp:498-504 [Conf ] Philip M. Long , Xinyu Wu Mistake Bounds for Maximum Entropy Discrimination. [Citation Graph (0, 0)][DBLP ] NIPS, 2004, pp:- [Conf ] Yi Li , Philip M. Long , Aravind Srinivasan Improved bounds on the sample complexity of learning. [Citation Graph (0, 0)][DBLP ] SODA, 2000, pp:309-318 [Conf ] Peter Auer , Philip M. Long Simulating access to hidden information while learning. [Citation Graph (0, 0)][DBLP ] STOC, 1994, pp:263-272 [Conf ] Peter Auer , Philip M. Long , Aravind Srinivasan Approximating Hyper-Rectangles: Learning and Pseudo-Random Sets. [Citation Graph (0, 0)][DBLP ] STOC, 1997, pp:314-323 [Conf ] Nick Littlestone , Philip M. Long , Manfred K. Warmuth On-Line Learning of Linear Functions [Citation Graph (0, 0)][DBLP ] STOC, 1991, pp:465-475 [Conf ] Philip M. Long Using the Pseudo-Dimension to Analyze Approximation Algorithms for Integer Programming. [Citation Graph (0, 0)][DBLP ] WADS, 2001, pp:26-37 [Conf ] Naoki Abe , Alan W. Biermann , Philip M. Long Reinforcement Learning with Immediate Rewards and Linear Hypotheses. [Citation Graph (0, 0)][DBLP ] Algorithmica, 2003, v:37, n:4, pp:263-293 [Journal ] P. Krishnan , Philip M. Long , Jeffrey Scott Vitter Adaptive Disk Spindown via Optimal Rent-to-Buy in Probabilistic Environments. [Citation Graph (0, 0)][DBLP ] Algorithmica, 1999, v:23, n:1, pp:31-56 [Journal ] Nick Littlestone , Philip M. Long , Manfred K. Warmuth On-line Learning of Linear Functions. [Citation Graph (0, 0)][DBLP ] Computational Complexity, 1995, v:5, n:1, pp:1-23 [Journal ] Peter Auer , Philip M. Long Simulating Access to Hidden Information while Learning [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2000, v:7, n:67, pp:- [Journal ] Peter Auer , Philip M. Long , Wolfgang Maass , Gerhard J. Woeginger On the Complexity of Function Learning [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2000, v:7, n:50, pp:- [Journal ] Peter Auer , Philip M. Long , Aravind Srinivasan Approximating Hyper-Rectangles: Learning and Pseudo-random Sets [Citation Graph (0, 0)][DBLP ] Electronic Colloquium on Computational Complexity (ECCC), 2000, v:7, n:72, pp:- [Journal ] Rakesh D. Barve , Philip M. Long On the Complexity of Learning from Drifting Distributions. [Citation Graph (0, 0)][DBLP ] Inf. Comput., 1997, v:138, n:2, pp:170-193 [Journal ] David P. Helmbold , Nick Littlestone , Philip M. Long Apple Tasting. [Citation Graph (0, 0)][DBLP ] Inf. Comput., 2000, v:161, n:2, pp:85-139 [Journal ] David P. Helmbold , Nick Littlestone , Philip M. Long On-Line Learning with Linear Loss Constraints. [Citation Graph (0, 0)][DBLP ] Inf. Comput., 2000, v:161, n:2, pp:140-171 [Journal ] Philip M. Long Efficient algorithms for learning functions with bounded variation. [Citation Graph (0, 0)][DBLP ] Inf. Comput., 2004, v:188, n:1, pp:99-115 [Journal ] Philip M. Long , Manfred K. Warmuth Composite Geometric Concepts and Polynomial Predictability [Citation Graph (0, 0)][DBLP ] Inf. Comput., 1994, v:113, n:2, pp:230-252 [Journal ] Philip M. Long An upper bound on the sample complexity of PAC-learning halfspaces with respect to the uniform distribution. [Citation Graph (0, 0)][DBLP ] Inf. Process. Lett., 2003, v:87, n:5, pp:229-234 [Journal ] Philip M. Long Halfspace Learning, Linear Programming, and Nonmalicious Distributions. [Citation Graph (0, 0)][DBLP ] Inf. Process. Lett., 1994, v:51, n:5, pp:245-250 [Journal ] Dzung T. Hoang , Philip M. Long , Jeffrey Scott Vitter Dictionary Selection Using Partial Matching. [Citation Graph (0, 0)][DBLP ] Inf. Sci., 1999, v:119, n:1-2, pp:57-72 [Journal ] Peter Auer , Philip M. Long , Aravind Srinivasan Approximating Hyper-Rectangles: Learning and Pseudorandom Sets. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 1998, v:57, n:3, pp:376-388 [Journal ] Peter L. Bartlett , Philip M. Long Prediction, Learning, Uniform Convergence, and Scale-Sensitive Dimensions. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 1998, v:56, n:2, pp:174-190 [Journal ] Peter L. Bartlett , Philip M. Long , Robert C. Williamson Fat-Shattering and the Learnability of Real-Valued Functions. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 1996, v:52, n:3, pp:434-452 [Journal ] Shai Ben-David , Nicolò Cesa-Bianchi , David Haussler , Philip M. Long Characterizations of Learnability for Classes of {0, ..., n}-Valued Functions. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 1995, v:50, n:1, pp:74-86 [Journal ] Shai Ben-David , Nadav Eiron , Philip M. Long On the difficulty of approximately maximizing agreements. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 2003, v:66, n:3, pp:496-514 [Journal ] Sanjoy Dasgupta , Philip M. Long Performance guarantees for hierarchical clustering. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 2005, v:70, n:4, pp:555-569 [Journal ] Yi Li , Philip M. Long , Aravind Srinivasan Improved Bounds on the Sample Complexity of Learning. [Citation Graph (0, 0)][DBLP ] J. Comput. Syst. Sci., 2001, v:62, n:3, pp:516-527 [Journal ] David Haussler , Philip M. Long A Generalization of Sauer's Lemma. [Citation Graph (0, 0)][DBLP ] J. Comb. Theory, Ser. A, 1995, v:71, n:2, pp:219-240 [Journal ] Peter Auer , Philip M. Long Structural Results About On-line Learning Models With and Without Queries. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1999, v:36, n:3, pp:147-181 [Journal ] Peter Auer , Philip M. Long , Wolfgang Maass , Gerhard J. Woeginger On the Complexity of Function Learning. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1995, v:18, n:2-3, pp:187-230 [Journal ] Sanjoy Dasgupta , Wee Sun Lee , Philip M. Long A Theoretical Analysis of Query Selection for Collaborative Filtering. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2003, v:51, n:3, pp:283-298 [Journal ] David P. Helmbold , Philip M. Long Tracking Drifting Concepts By Minimizing Disagreements. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1994, v:14, n:1, pp:27-45 [Journal ] Yi Li , Philip M. Long The Relaxed Online Maximum Margin Algorithm. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2002, v:46, n:1-3, pp:361-387 [Journal ] Philip M. Long Guest Editor's Introduction. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1997, v:27, n:1, pp:5- [Journal ] Philip M. Long The Complexity of Learning According to Two Models of a Drifting Environment. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1999, v:37, n:3, pp:337-354 [Journal ] Philip M. Long , Vinsensius Berlian Vega SN Boosting and Microarray Data. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2003, v:52, n:1-2, pp:31-44 [Journal ] Philip M. Long , Lei Tan PAC Learning Axis-aligned Rectangles with Respect to Product Distributions from Multiple-Instance Examples. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1998, v:30, n:1, pp:7-21 [Journal ] Philip M. Long , Apostol Natsev , Jeffrey Scott Vitter Text compression via alphabet re-representation. [Citation Graph (0, 0)][DBLP ] Neural Networks, 1999, v:12, n:4-5, pp:755-765 [Journal ] Don Kimber , Philip M. Long On-Line Learning of Smooth Functions of a Single Variable. [Citation Graph (0, 0)][DBLP ] Theor. Comput. Sci., 1995, v:148, n:1, pp:141-156 [Journal ] Philip M. Long Improved bounds about on-line learning of smooth-functions of a single variable. [Citation Graph (0, 0)][DBLP ] Theor. Comput. Sci., 2000, v:241, n:1-2, pp:25-35 [Journal ] Yi Li , Philip M. Long , Aravind Srinivasan The one-inclusion graph algorithm is near-optimal for the prediction model of learning. [Citation Graph (0, 0)][DBLP ] IEEE Transactions on Information Theory, 2001, v:47, n:3, pp:1257-1261 [Journal ] Philip M. Long , Rocco A. Servedio Attribute-efficient learning of decision lists and linear threshold functions under unconcentrated distributions. [Citation Graph (0, 0)][DBLP ] NIPS, 2006, pp:921-928 [Conf ] Yi Li , Philip M. Long Learnability and the doubling dimension. [Citation Graph (0, 0)][DBLP ] NIPS, 2006, pp:889-896 [Conf ] Philip M. Long , Rocco A. Servedio , Hans-Ulrich Simon Discriminative learning can succeed where generative learning fails. [Citation Graph (0, 0)][DBLP ] Inf. Process. Lett., 2007, v:103, n:4, pp:131-135 [Journal ] Baum's Algorithm Learns Intersections of Halfspaces with Respect to Log-Concave Distributions. [Citation Graph (, )][DBLP ] Learning Halfspaces with Malicious Noise. [Citation Graph (, )][DBLP ] Random classification noise defeats all convex potential boosters. [Citation Graph (, )][DBLP ] Finding Planted Partitions in Nearly Linear Time using Arrested Spectral Clustering. [Citation Graph (, )][DBLP ] Restricted Boltzmann Machines are Hard to Approximately Evaluate or Simulate. [Citation Graph (, )][DBLP ] One-Pass Boosting. [Citation Graph (, )][DBLP ] Boosting the Area under the ROC Curve. [Citation Graph (, )][DBLP ] Adaptive Martingale Boosting. [Citation Graph (, )][DBLP ] Search in 0.023secs, Finished in 0.029secs