The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Dale Schuurmans: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Adam J. Grove, Dale Schuurmans
    Boosting in the Limit: Maximizing the Margin of Learned Ensembles. [Citation Graph (0, 0)][DBLP]
    AAAI/IAAI, 1998, pp:692-699 [Conf]
  2. Relu Patrascu, Pascal Poupart, Dale Schuurmans, Craig Boutilier, Carlos Guestrin
    Greedy Linear Value-Approximation for Factored Markov Decision Processes. [Citation Graph (0, 0)][DBLP]
    AAAI/IAAI, 2002, pp:285-291 [Conf]
  3. Pascal Poupart, Craig Boutilier, Relu Patrascu, Dale Schuurmans
    Piecewise Linear Value Function Approximation for Factored MDPs. [Citation Graph (0, 0)][DBLP]
    AAAI/IAAI, 2002, pp:292-299 [Conf]
  4. Dale Schuurmans
    A New Metric-Based Approach to Model Selection. [Citation Graph (0, 0)][DBLP]
    AAAI/IAAI, 1997, pp:552-558 [Conf]
  5. Dale Schuurmans, Lloyd Greenwald
    Efficient exploration for optimizing immediate reward. [Citation Graph (0, 0)][DBLP]
    AAAI/IAAI, 1999, pp:385-392 [Conf]
  6. Dale Schuurmans, Finnegan Southey
    Local Search Characteristics of Incomplete SAT Procedures. [Citation Graph (0, 0)][DBLP]
    AAAI/IAAI, 2000, pp:297-302 [Conf]
  7. Tao Wang, Pascal Poupart, Michael Bowling, Dale Schuurmans
    Compact, Convex Upper Bound Iteration for Approximate POMDP Planning. [Citation Graph (0, 0)][DBLP]
    AAAI, 2006, pp:- [Conf]
  8. Linli Xu, Koby Crammer, Dale Schuurmans
    Robust Support Vector Machine Training via Convex Outlier Ablation. [Citation Graph (0, 0)][DBLP]
    AAAI, 2006, pp:- [Conf]
  9. Linli Xu, Dale Schuurmans
    Unsupervised and Semi-Supervised Multi-Class Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    AAAI, 2005, pp:904-910 [Conf]
  10. Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, Dale Schuurmans
    Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and Labeling. [Citation Graph (0, 0)][DBLP]
    ACL, 2006, pp:- [Conf]
  11. Fletcher Lu, Dale Schuurmans
    Model-Based Least-Squares Policy Evaluation. [Citation Graph (0, 0)][DBLP]
    Canadian Conference on AI, 2003, pp:342-352 [Conf]
  12. Xiangji Huang, Fuchun Peng, Aijun An, Dale Schuurmans, Nick Cercone
    Session Boundary Detection for Association Rule Learning Using n-Gram Language Models. [Citation Graph (0, 0)][DBLP]
    Canadian Conference on AI, 2003, pp:237-251 [Conf]
  13. Shaojun Wang, Dale Schuurmans
    Learning Continuous Latent Variable Models with Bregman Divergences. [Citation Graph (0, 0)][DBLP]
    ALT, 2003, pp:190-204 [Conf]
  14. Fuchun Peng, Xiangji Huang, Dale Schuurmans, Nick Cercone
    Investigating the Relationship between Word Segmentation Performance and Retrieval Performance in Chinese IR. [Citation Graph (0, 0)][DBLP]
    COLING, 2002, pp:- [Conf]
  15. Adam J. Grove, Nick Littlestone, Dale Schuurmans
    General Convergence Results for Linear Discriminant Updates. [Citation Graph (0, 0)][DBLP]
    COLT, 1997, pp:171-183 [Conf]
  16. Dale Schuurmans, Russell Greiner
    Sequential PAC Learning. [Citation Graph (0, 0)][DBLP]
    COLT, 1995, pp:377-384 [Conf]
  17. Craig Boutilier, Relu Patrascu, Pascal Poupart, Dale Schuurmans
    Constraint-Based Optimization with the Minimax Decision Criterion. [Citation Graph (0, 0)][DBLP]
    CP, 2003, pp:168-182 [Conf]
  18. Ali Ghodsi, Jiayuan Huang, Finnegan Southey, Dale Schuurmans
    Tangent-Corrected Embedding. [Citation Graph (0, 0)][DBLP]
    CVPR (1), 2005, pp:518-525 [Conf]
  19. Feng Jiao, Stan Z. Li, Heung-Yeung Shum, Dale Schuurmans
    Face Alignment Using Statistical Models and Wavelet Features. [Citation Graph (0, 0)][DBLP]
    CVPR (1), 2003, pp:321-327 [Conf]
  20. Fuchun Peng, Dale Schuurmans, Vlado Keselj, Shaojun Wang
    Language Independent Authorship Attribution with Character Level N-Grams. [Citation Graph (0, 0)][DBLP]
    EACL, 2003, pp:267-274 [Conf]
  21. Russell Greiner, Dale Schuurmans
    Learning an Optimally Accurate Representation System. [Citation Graph (0, 0)][DBLP]
    ECAI Workshop on Knowledge Representation and Reasoning, 1992, pp:145-159 [Conf]
  22. Ali Ghodsi, Jiayuan Huang, Dale Schuurmans
    Transformation-Invariant Embedding for Image Analysis. [Citation Graph (0, 0)][DBLP]
    ECCV (4), 2004, pp:519-530 [Conf]
  23. Fuchun Peng, Dale Schuurmans
    Combining Naive Bayes and n-Gram Language Models for Text Classification. [Citation Graph (0, 0)][DBLP]
    ECIR, 2003, pp:335-350 [Conf]
  24. Dale Schuurmans
    Characterizing rational versus exponential learning curves. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1995, pp:272-286 [Conf]
  25. Dale Schuurmans, Jonathan Schaeffer
    Representational Difficulties with Classifier Systems. [Citation Graph (0, 0)][DBLP]
    ICGA, 1989, pp:328-333 [Conf]
  26. Shaojun Wang, Shaomin Wang, Li Cheng, Russell Greiner, Dale Schuurmans
    Stochastic Analysis of Lexical and Semantic Enhanced Structural Language Model. [Citation Graph (0, 0)][DBLP]
    ICGI, 2006, pp:97-111 [Conf]
  27. Li Cheng, Feng Jiao, Dale Schuurmans, Shaojun Wang
    Variational Bayesian image modelling. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:129-136 [Conf]
  28. Carlos Guestrin, Relu Patrascu, Dale Schuurmans
    Algorithm-Directed Exploration for Model-Based Reinforcement Learning in Factored MDPs. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:235-242 [Conf]
  29. Fletcher Lu, Relu Patrascu, Dale Schuurmans
    Investigating the Maximum Likelihood Alternative to TD(lambda). [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:403-410 [Conf]
  30. Dale Schuurmans, Finnegan Southey
    An Adaptive Regularization Criterion for Supervised Learning. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:847-854 [Conf]
  31. Dale Schuurmans, Lyle H. Ungar, Dean P. Foster
    Characterizing the generalization performance of model selection strategies. [Citation Graph (0, 0)][DBLP]
    ICML, 1997, pp:340-348 [Conf]
  32. Tao Wang, Daniel J. Lizotte, Michael H. Bowling, Dale Schuurmans
    Bayesian sparse sampling for on-line reward optimization. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:956-963 [Conf]
  33. Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao
    Learning Mixture Models with the Latent Maximum Entropy Principle. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:784-791 [Conf]
  34. Shaojun Wang, Shaomin Wang, Russell Greiner, Dale Schuurmans, Li Cheng
    Exploiting syntactic, semantic and lexical regularities in language modeling via directed Markov random fields. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:948-955 [Conf]
  35. Linli Xu, Dana F. Wilkinson, Finnegan Southey, Dale Schuurmans
    Discriminative unsupervised learning of structured predictors. [Citation Graph (0, 0)][DBLP]
    ICML, 2006, pp:1057-1064 [Conf]
  36. Fuchun Peng, Dale Schuurmans
    Self-Supervised Chinese Word Segmentation. [Citation Graph (0, 0)][DBLP]
    IDA, 2001, pp:238-247 [Conf]
  37. Craig Boutilier, Relu Patrascu, Pascal Poupart, Dale Schuurmans
    Regret-based Utility Elicitation in Constraint-based Decision Problems. [Citation Graph (0, 0)][DBLP]
    IJCAI, 2005, pp:929-934 [Conf]
  38. Yuhong Guo, Russell Greiner, Dale Schuurmans
    Learning Coordination Classifiers. [Citation Graph (0, 0)][DBLP]
    IJCAI, 2005, pp:714-721 [Conf]
  39. Dale Schuurmans, Russell Greiner
    Practical PAC Learning. [Citation Graph (0, 0)][DBLP]
    IJCAI, 1995, pp:1169-1177 [Conf]
  40. Dale Schuurmans, Finnegan Southey, Robert C. Holte
    The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming. [Citation Graph (0, 0)][DBLP]
    IJCAI, 2001, pp:334-341 [Conf]
  41. Daniel J. Lizotte, Tao Wang, Michael Bowling, Dale Schuurmans
    Automatic Gait Optimization with Gaussian Process Regression. [Citation Graph (0, 0)][DBLP]
    IJCAI, 2007, pp:944-949 [Conf]
  42. Qin Iris Wang, Dekang Lin, Dale Schuurmans
    Simple Training of Dependency Parsers via Structured Boosting. [Citation Graph (0, 0)][DBLP]
    IJCAI, 2007, pp:1756-1762 [Conf]
  43. Russell Greiner, Dale Schuurmans
    Learning Useful Horn Approximations. [Citation Graph (0, 0)][DBLP]
    KR, 1992, pp:383-392 [Conf]
  44. Fuchun Peng, Dale Schuurmans, Shaojun Wang
    Language and Task Independent Text Categorization with Simple Language Models. [Citation Graph (0, 0)][DBLP]
    HLT-NAACL, 2003, pp:- [Conf]
  45. Dale Schuurmans
    Greedy Importance Sampling. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:596-602 [Conf]
  46. Dale Schuurmans, Relu Patrascu
    Direct value-approximation for factored MDPs. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:1579-1586 [Conf]
  47. Finnegan Southey, Dale Schuurmans, Ali Ghodsi
    Regularized Greedy Importance Sampling. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:753-760 [Conf]
  48. Linli Xu, James Neufeld, Bryce Larson, Dale Schuurmans
    Maximum Margin Clustering. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  49. Fuchun Peng, Dale Schuurmans
    A Simple Closed-Class/Open-Class Factorization for Improved Language Modeling. [Citation Graph (0, 0)][DBLP]
    NLPRS, 2001, pp:145-152 [Conf]
  50. Fuchun Peng, Dale Schuurmans
    A Hierarchical EM Approach to Word Segmentation. [Citation Graph (0, 0)][DBLP]
    NLPRS, 2001, pp:475-480 [Conf]
  51. Jiayuan Huang, Tingshao Zhu, Russell Greiner, Dengyong Zhou, Dale Schuurmans
    Information Marginalization on Subgraphs. [Citation Graph (0, 0)][DBLP]
    PKDD, 2006, pp:199-210 [Conf]
  52. Jiayuan Huang, Tingshao Zhu, Dale Schuurmans
    Web Communities Identification from Random Walks. [Citation Graph (0, 0)][DBLP]
    PKDD, 2006, pp:187-198 [Conf]
  53. Fuchun Peng, Xiangji Huang, Dale Schuurmans, Nick Cercone, Stephen E. Robertson
    Using self-supervised word segmentation in Chinese information retrieval. [Citation Graph (0, 0)][DBLP]
    SIGIR, 2002, pp:349-350 [Conf]
  54. Russell Greiner, Adam J. Grove, Dale Schuurmans
    Learning Bayesian Nets that Perform Well. [Citation Graph (0, 0)][DBLP]
    UAI, 1997, pp:198-207 [Conf]
  55. Fletcher Lu, Dale Schuurmans
    Monte Carlo Matrix Inversion Policy Evaluation. [Citation Graph (0, 0)][DBLP]
    UAI, 2003, pp:386-393 [Conf]
  56. Dale Schuurmans, Finnegan Southey
    Monte Carlo inference via greedy importance sampling. [Citation Graph (0, 0)][DBLP]
    UAI, 2000, pp:523-532 [Conf]
  57. Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao
    Boltzmann Machine Learning with the Latent Maximum Entropy Principle. [Citation Graph (0, 0)][DBLP]
    UAI, 2003, pp:567-574 [Conf]
  58. Fuchun Peng, Xiangji Huang, Dale Schuurmans, Shaojun Wang
    Text classification in Asian languages without word segmentation. [Citation Graph (0, 0)][DBLP]
    IRAL, 2003, pp:41-48 [Conf]
  59. Craig Boutilier, Relu Patrascu, Pascal Poupart, Dale Schuurmans
    Constraint-based optimization and utility elicitation using the minimax decision criterion. [Citation Graph (0, 0)][DBLP]
    Artif. Intell., 2006, v:170, n:8-9, pp:686-713 [Journal]
  60. Dale Schuurmans, Finnegan Southey
    Local search characteristics of incomplete SAT procedures. [Citation Graph (0, 0)][DBLP]
    Artif. Intell., 2001, v:132, n:2, pp:121-150 [Journal]
  61. Fuchun Peng, Dale Schuurmans, Shaojun Wang
    Augmenting Naive Bayes Classifiers with Statistical Language Models. [Citation Graph (0, 0)][DBLP]
    Inf. Retr., 2004, v:7, n:3-4, pp:317-345 [Journal]
  62. Xiangji Huang, Fuchun Peng, Dale Schuurmans, Nick Cercone, Stephen E. Robertson
    Applying Machine Learning to Text Segmentation for Information Retrieval. [Citation Graph (0, 0)][DBLP]
    Inf. Retr., 2003, v:6, n:3-4, pp:333-362 [Journal]
  63. Xiangji Huang, Fuchun Peng, Aijun An, Dale Schuurmans
    Dynamic Web log session identification with statistical language models. [Citation Graph (0, 0)][DBLP]
    JASIST, 2004, v:55, n:14, pp:1290-1303 [Journal]
  64. Dale Schuurmans
    Characterizing Rational Versus Exponential learning Curves. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 1997, v:55, n:1, pp:140-160 [Journal]
  65. Yoshua Bengio, Dale Schuurmans
    Guest Introduction: Special Issue on New Methods for Model Selection and Model Combination. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2002, v:48, n:1-3, pp:5-7 [Journal]
  66. Adam J. Grove, Nick Littlestone, Dale Schuurmans
    General Convergence Results for Linear Discriminant Updates. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2001, v:43, n:3, pp:173-210 [Journal]
  67. Dale Schuurmans, Finnegan Southey
    Metric-Based Methods for Adaptive Model Selection and Regularization. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2002, v:48, n:1-3, pp:51-84 [Journal]
  68. Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao
    Combining Statistical Language Models via the Latent Maximum Entropy Principle. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2005, v:60, n:1-3, pp:229-250 [Journal]
  69. Ali Ghodsi, Dale Schuurmans
    Automatic basis selection techniques for RBF networks. [Citation Graph (0, 0)][DBLP]
    Neural Networks, 2003, v:16, n:5-6, pp:809-816 [Journal]
  70. Tibério S. Caetano, Terry Caelli, Dale Schuurmans, Dante Augusto Couto Barone
    Graphical Models and Point Pattern Matching. [Citation Graph (0, 0)][DBLP]
    IEEE Trans. Pattern Anal. Mach. Intell., 2006, v:28, n:10, pp:1646-1663 [Journal]
  71. Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, Russell Greiner
    Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:793-800 [Conf]
  72. Li Cheng, S. V. N. Vishwanathan, Dale Schuurmans, Shaojun Wang, Terry Caelli
    implicit Online Learning with Kernels. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:249-256 [Conf]
  73. Yuhong Guo, Dale Schuurmans
    Learning Gene Regulatory Networks via Globally Regularized Risk Minimization. [Citation Graph (0, 0)][DBLP]
    RECOMB-CG, 2007, pp:83-95 [Conf]
  74. Yuhong Guo, Dana F. Wilkinson, Dale Schuurmans
    Maximum Margin Bayesian Networks. [Citation Graph (0, 0)][DBLP]
    UAI, 2005, pp:233-242 [Conf]
  75. Yuhong Guo, Dale Schuurmans
    Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering. [Citation Graph (0, 0)][DBLP]
    UAI, 2006, pp:- [Conf]

  76. Semi-Supervised Convex Training for Dependency Parsing. [Citation Graph (, )][DBLP]


  77. An Online Discriminative Approach to Background Subtraction. [Citation Graph (, )][DBLP]


  78. Fast normalized cut with linear constraints. [Citation Graph (, )][DBLP]


  79. Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning. [Citation Graph (, )][DBLP]


  80. Convex Relaxations of Latent Variable Training. [Citation Graph (, )][DBLP]


  81. Stable Dual Dynamic Programming. [Citation Graph (, )][DBLP]


  82. Discriminative Batch Mode Active Learning. [Citation Graph (, )][DBLP]


  83. Linear Coherent Bi-cluster Discovery via Line Detection and Sample Majority Voting. [Citation Graph (, )][DBLP]


  84. Policy Iteration for Learning an Exercise Policy for American Options. [Citation Graph (, )][DBLP]


  85. A Reformulation of Support Vector Machines for General Confidence Functions. [Citation Graph (, )][DBLP]


  86. Discriminative Maximum Margin Image Object Categorization with Exact Inference. [Citation Graph (, )][DBLP]


Search in 0.483secs, Finished in 0.487secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002