Search the dblp DataBase
Andrew Kingston :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Andrew Kingston , Imants D. Svalbe A Discrete Modulo N Projective Radon Transform for N × N Images. [Citation Graph (0, 0)][DBLP ] DGCI, 2005, pp:136-147 [Conf ] Nicolas Normand , Andrew Kingston , Pierre Évenou A Geometry Driven Reconstruction Algorithm for the Mojette Transform. [Citation Graph (0, 0)][DBLP ] DGCI, 2006, pp:122-133 [Conf ] Imants D. Svalbe , Shekhar Chandra , Andrew Kingston , Jean-Pierre Guédon Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformations. [Citation Graph (0, 0)][DBLP ] DGCI, 2006, pp:134-145 [Conf ] Imants D. Svalbe , Andrew Kingston Intertwined Digital Rays in Discrete Radon Projections Pooled over Adjacent Prime Sized Arrays. [Citation Graph (0, 0)][DBLP ] DGCI, 2003, pp:485-494 [Conf ] Andrew Kingston , Imants D. Svalbe Mapping between Digital and Continuous Projections via the Discrete Radon Transform in Fourier Space. [Citation Graph (0, 0)][DBLP ] DICTA, 2003, pp:263-272 [Conf ] Andrew Kingston , Imants D. Svalbe Geometric Shape Effects in Redundant Keys used to Encrypt Data Transformed by Finite Discrete Radon Projections. [Citation Graph (0, 0)][DBLP ] DICTA, 2005, pp:16- [Conf ] Imants D. Svalbe , Andrew Kingston On Correcting the Unevenness of Angle Distributions Arising from Integer Ratios Lying in Restricted Portions of the Farey Plane. [Citation Graph (0, 0)][DBLP ] IWCIA, 2004, pp:110-121 [Conf ] Andrew Kingston Orthogonal discrete Radon transform over p^{n} ×p^{n} images. [Citation Graph (0, 0)][DBLP ] Signal Processing, 2006, v:86, n:8, pp:2040-2050 [Journal ] Andrew Kingston , Imants D. Svalbe Generalised finite radon transform for N×N images. [Citation Graph (0, 0)][DBLP ] Image Vision Comput., 2007, v:25, n:10, pp:1620-1630 [Journal ] Lossless Image Compression and Selective Encryption using a Discrete Radon Transform. [Citation Graph (, )][DBLP ] Redundant image representation via multi-scale digital Radon projections. [Citation Graph (, )][DBLP ] Erasure Coding with the Finite Radon Transform. [Citation Graph (, )][DBLP ] Fast Mojette Transform for Discrete Tomography [Citation Graph (, )][DBLP ] Search in 0.002secs, Finished in 0.003secs