Search the dblp DataBase
Nada Lavrac :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Ryszard S. Michalski , Igor Mozetic , Jiarong Hong , Nada Lavrac The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains. [Citation Graph (4, 0)][DBLP ] AAAI, 1986, pp:1041-1047 [Conf ] Saso Dzeroski , Nada Lavrac Inductive Learning in Deductive Databases. [Citation Graph (2, 15)][DBLP ] IEEE Trans. Knowl. Data Eng., 1993, v:5, n:6, pp:939-949 [Journal ] Nada Lavrac , Saso Dzeroski Background Knowledge and Declarative Bias in Inductive Concept Learning. [Citation Graph (1, 0)][DBLP ] AII, 1992, pp:51-71 [Conf ] Nada Lavrac , Saso Dzeroski , Marko Grobelnik Learning Nonrecursive Definitions of Relations with LINUS. [Citation Graph (1, 0)][DBLP ] EWSL, 1991, pp:265-281 [Conf ] Saso Dzeroski , Nada Lavrac Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL. [Citation Graph (1, 0)][DBLP ] ML, 1991, pp:399-402 [Conf ] Dragan Gamberger , Nada Lavrac , Ciril Groselj Diagnostic Rules of Increased Reliability for Critical Medical Applications. [Citation Graph (0, 0)][DBLP ] AIMDM, 1999, pp:361-365 [Conf ] Nada Lavrac Machine Learning for Data Mining in Medicine. [Citation Graph (0, 0)][DBLP ] AIMDM, 1999, pp:47-64 [Conf ] Dragan Gamberger , Nada Lavrac Analysis of Gene Expression Data by the Logic Minimization Approach. [Citation Graph (0, 0)][DBLP ] AIME, 2003, pp:244-248 [Conf ] Nada Lavrac , Marko Bohanec , Aleksander Pur , Bojan Cestnik , Mitja Jermol , Tanja Urbancic , Marko Debeljak , Branko Kavsek , Tadeja Kopac Resource Modeling and Analysis of Regional Public Health Care Data by Means of Knowledge Technologies. [Citation Graph (0, 0)][DBLP ] AIME, 2005, pp:414-418 [Conf ] Igor Zelic , Igor Kononenko , Nada Lavrac , Vanja Vuga Machine Learning Applied to Diagnosis of Sport Injuries. [Citation Graph (0, 0)][DBLP ] AIME, 1997, pp:138-141 [Conf ] Dragan Gamberger , Nada Lavrac , Saso Dzeroski Noise Elimination in Inductive Concept Learning: A Case Study in Medical Diagnosois. [Citation Graph (0, 0)][DBLP ] ALT, 1996, pp:199-212 [Conf ] Nada Lavrac , Dragan Gamberger , Peter D. Turney Cost-Sensitive Feature Reduction Applied to a Hybrid Genetic Algorithm. [Citation Graph (0, 0)][DBLP ] ALT, 1996, pp:127-134 [Conf ] Peter A. Flach , Nada Lavrac Learning in Clausal Logic: A Perspective on Inductive Logic Programming. [Citation Graph (0, 0)][DBLP ] Computational Logic: Logic Programming and Beyond, 2002, pp:437-471 [Conf ] Iztok A. Pilih , Dunja Mladenic , Nada Lavrac , Tine S. Prevec Using machine learning for outcome prediction of patients with severe head injury. [Citation Graph (0, 0)][DBLP ] CBMS, 1997, pp:200-204 [Conf ] Igor Zelic , Igor Kononenko , Nada Lavrac , Vanja Vuga Diagnosis of sport injuries with machine learning: explanation of induced decisions. [Citation Graph (0, 0)][DBLP ] CBMS, 1997, pp:195-199 [Conf ] Nada Lavrac , Dragan Gamberger Relevancy in Constraint-Based Subgroup Discovery. [Citation Graph (0, 0)][DBLP ] Constraint-Based Mining and Inductive Databases, 2004, pp:243-266 [Conf ] Igor Trajkovski , Filip Zelezný , Jakub Tolar , Nada Lavrac Relational Subgroup Discovery for Descriptive Analysis of Microarray Data. [Citation Graph (0, 0)][DBLP ] CompLife, 2006, pp:86-96 [Conf ] Nada Lavrac , Filip Zelezný , Saso Dzeroski Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery. [Citation Graph (0, 0)][DBLP ] Local Pattern Detection, 2004, pp:71-88 [Conf ] Dragan Gamberger , Nada Lavrac Avoiding Data Overfitting in Scientific Discovery: Experiments in Functional Genomics. [Citation Graph (0, 0)][DBLP ] ECAI, 2004, pp:470-474 [Conf ] Matevz Kovacic , Nada Lavrac , Marko Grobelnik , Darko Zupanic , Dunja Mladenic Stochastic Search in Inductive Logic Programming. [Citation Graph (0, 0)][DBLP ] ECAI, 1992, pp:444-445 [Conf ] Dragan Gamberger , Nada Lavrac Conditions for Occam's Razor Applicability and Noise Elimination. [Citation Graph (0, 0)][DBLP ] ECML, 1997, pp:108-123 [Conf ] Matjaz Gams , Nada Lavrac Review of Five Empirical Learning Systems Within a Proposed Schemata. [Citation Graph (0, 0)][DBLP ] EWSL, 1987, pp:46-66 [Conf ] Branko Kavsek , Nada Lavrac , Anuska Ferligoj Consensus Decision Trees: Using Consensus Hierarchical Clustering for Data Relabelling and Reduction. [Citation Graph (0, 0)][DBLP ] ECML, 2001, pp:251-262 [Conf ] Viktor Jovanoski , Nada Lavrac Classification Rule Learning with APRIORI-C. [Citation Graph (0, 0)][DBLP ] EPIA, 2001, pp:44-51 [Conf ] Nada Lavrac Challenges for Inductive Logic Programming. [Citation Graph (0, 0)][DBLP ] EPIA, 1999, pp:16-33 [Conf ] Nada Lavrac , Peter A. Flach , Branko Kavsek , Ljupco Todorovski Adapting classification rule induction to subgroup discovery. [Citation Graph (0, 0)][DBLP ] ICDM, 2002, pp:266-273 [Conf ] Nada Lavrac Inductive Logic Programming for Relational Knowledge Discovery. [Citation Graph (0, 0)][DBLP ] IJCSLP, 1998, pp:7-24 [Conf ] Dragan Gamberger , Nada Lavrac Descriptive Induction through Subgroup Discovery: A Case Study in a Medical Domain. [Citation Graph (0, 0)][DBLP ] ICML, 2002, pp:163-170 [Conf ] Dragan Gamberger , Nada Lavrac , Ciril Groselj Experiments with Noise Filtering in a Medical Domain. [Citation Graph (0, 0)][DBLP ] ICML, 1999, pp:143-151 [Conf ] Branko Kavsek , Nada Lavrac , Viktor Jovanoski APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery. [Citation Graph (0, 0)][DBLP ] IDA, 2003, pp:230-241 [Conf ] Nada Lavrac , Peter Ljubic , Mitja Jermol , Gregor Papa A Decision Support Approach to Modeling Trust in Networked Organizations. [Citation Graph (0, 0)][DBLP ] IEA/AIE, 2005, pp:746-748 [Conf ] Aleksander Pur , Marko Bohanec , Bojan Cestnik , Nada Lavrac , Marko Debeljak , Tadeja Kopac Data Mining for Decision Support: An Application in Public Health Care. [Citation Graph (0, 0)][DBLP ] IEA/AIE, 2005, pp:459-469 [Conf ] Mitja Jermol , Nada Lavrac , Tanja Urbancic , Tadeja Kopac Supporting a Public Health Care Virtual Organization by Knowledge Technologies. [Citation Graph (0, 0)][DBLP ] Virtual Enterprises and Collaborative Networks, 2004, pp:567-576 [Conf ] Nada Lavrac Virtual Enterprise for Data Mining and Decision Support. [Citation Graph (0, 0)][DBLP ] PRO-VE, 2002, pp:- [Conf ] Luc De Raedt , Nada Lavrac , Saso Dzeroski Multiple Predicate Learning. [Citation Graph (0, 0)][DBLP ] IJCAI, 1993, pp:1037-1043 [Conf ] Mark-A. Krogel , Simon Rawles , Filip Zelezný , Peter A. Flach , Nada Lavrac , Stefan Wrobel Comparative Evaluation of Approaches to Propositionalization. [Citation Graph (0, 0)][DBLP ] ILP, 2003, pp:197-214 [Conf ] Nada Lavrac , Peter A. Flach , Blaz Zupan Rule Evaluation Measures: A Unifying View. [Citation Graph (0, 0)][DBLP ] ILP, 1999, pp:174-185 [Conf ] Dragan Gamberger , Nada Lavrac Noise Detection and Elimination Applied to Noise Handling in a KRK Chess Endgame. [Citation Graph (0, 0)][DBLP ] Inductive Logic Programming Workshop, 1996, pp:72-88 [Conf ] Nada Lavrac , Filip Zelezný , Peter A. Flach RSD: Relational Subgroup Discovery through First-Order Feature Construction. [Citation Graph (0, 0)][DBLP ] ILP, 2002, pp:149-165 [Conf ] Dragan Gamberger , Nada Lavrac , Goran Krstacic , Tomislav Smuc Inconsistency Tests for Patient Records in a Coronary Heart Disease Database. [Citation Graph (0, 0)][DBLP ] ISMDA, 2000, pp:183-189 [Conf ] Luc De Raedt , Nada Lavrac The Many Faces of Inductive Logic Programming. [Citation Graph (0, 0)][DBLP ] ISMIS, 1993, pp:435-449 [Conf ] Nada Lavrac Subgroup Discovery Techniques and Applications. [Citation Graph (0, 0)][DBLP ] PAKDD, 2005, pp:2-14 [Conf ] Dragan Gamberger , Nada Lavrac Confirmation Rule Sets. [Citation Graph (0, 0)][DBLP ] PKDD, 2000, pp:34-43 [Conf ] Dragan Gamberger , Nada Lavrac Generating Actionable Knowledge by Expert-Guided Subgroup Discovery. [Citation Graph (0, 0)][DBLP ] PKDD, 2002, pp:163-174 [Conf ] Gemma C. Garriga , Petra Kralj , Nada Lavrac Closed Sets for Labeled Data. [Citation Graph (0, 0)][DBLP ] PKDD, 2006, pp:163-174 [Conf ] Ljupco Todorovski , Peter A. Flach , Nada Lavrac Predictive Performance of Weghted Relative Accuracy. [Citation Graph (0, 0)][DBLP ] PKDD, 2000, pp:255-264 [Conf ] Branko Kavsek , Nada Lavrac , Ljupco Todorovski ROC Analysis of Example Weighting in Subgroup Discovery. [Citation Graph (0, 0)][DBLP ] ROCAI, 2004, pp:55-60 [Conf ] Nada Lavrac , Saso Dzeroski , Vladimir Pirnat , Viljem Krizman Learning Rules for Early Diagnosis of Rheumatic Diseases. [Citation Graph (0, 0)][DBLP ] SCAI, 1991, pp:138-149 [Conf ] Nada Lavrac Inductive Logic Programming. [Citation Graph (0, 0)][DBLP ] WLP, 1994, pp:146-160 [Conf ] Dragan Gamberger , Nada Lavrac , Saso Dzeroski Noise Detection and Elimination in data Proprocessing: Experiments in Medical Domains. [Citation Graph (0, 0)][DBLP ] Applied Artificial Intelligence, 2000, v:14, n:2, pp:205-223 [Journal ] Branko Kavsek , Nada Lavrac APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery. [Citation Graph (0, 0)][DBLP ] Applied Artificial Intelligence, 2006, v:20, n:7, pp:543-583 [Journal ] Nada Lavrac , Saso Dzeroski , Vladimir Pirnat , Viljem Krizman The utility of background knowledge in learning medical diagnostic rules. [Citation Graph (0, 0)][DBLP ] Applied Artificial Intelligence, 1993, v:7, n:3, pp:273-293 [Journal ] Nada Lavrac , Luc De Raedt Inductive Logic Programming: A Survey of European Research. [Citation Graph (0, 0)][DBLP ] AI Commun., 1995, v:8, n:1, pp:3-19 [Journal ] Nada Lavrac , Irene Weber , Darko Zupanic , Dimitar Kazakov , Olga Stepánková , Saso Dzeroski ILPNET Repositories on WWW: Inductive Logic Programming Systems, Datasets and Bibliography. [Citation Graph (0, 0)][DBLP ] AI Commun., 1996, v:9, n:4, pp:157-206 [Journal ] Nada Lavrac , Blaz Zupan , Igor Kononenko , Matjaz Kukar , Elpida T. Keravnou Intelligent Data Analysis for Medical Diagnosis: Using Machine Learning and Temporal Abstraction. [Citation Graph (0, 0)][DBLP ] AI Commun., 1998, v:11, n:3-4, pp:191-218 [Journal ] Dragan Gamberger , Nada Lavrac Active subgroup mining: a case study in coronary heart disease risk group detection. [Citation Graph (0, 0)][DBLP ] Artificial Intelligence in Medicine, 2003, v:28, n:1, pp:27-57 [Journal ] Elpida T. Keravnou , Nada Lavrac AIM portraits: tracing the evolution of artificial intelligence in medicine and predicting its future in the new millennium. [Citation Graph (0, 0)][DBLP ] Artificial Intelligence in Medicine, 2001, v:23, n:1, pp:1-4 [Journal ] Nada Lavrac Selected techniques for data mining in medicine. [Citation Graph (0, 0)][DBLP ] Artificial Intelligence in Medicine, 1999, v:16, n:1, pp:3-23 [Journal ] Saso Dzeroski , Nada Lavrac Editorial. [Citation Graph (0, 0)][DBLP ] Data Min. Knowl. Discov., 1999, v:3, n:1, pp:5-6 [Journal ] Nada Lavrac , Dragan Gamberger , Peter D. Turney A Relevancy Filter for Constructive Induction. [Citation Graph (0, 0)][DBLP ] IEEE Intelligent Systems, 1998, v:13, n:2, pp:50-56 [Journal ] Dragan Gamberger , Nada Lavrac Expert-Guided Subgroup Discovery: Methodology and Application. [Citation Graph (0, 0)][DBLP ] J. Artif. Intell. Res. (JAIR), 2002, v:17, n:, pp:501-527 [Journal ] Dragan Gamberger , Nada Lavrac , Filip Zelezný , Jakub Tolar Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. [Citation Graph (0, 0)][DBLP ] Journal of Biomedical Informatics, 2004, v:37, n:4, pp:269-284 [Journal ] Darko Zupanic , Milan Hodoscek , Nada Lavrac , Igor Mozetic Global Energy Minimization of Small Molecules Combining Constraint Logic Programming and Molecular Mechanics. [Citation Graph (0, 0)][DBLP ] Journal of Chemical Information and Computer Sciences, 1997, v:37, n:6, pp:966-970 [Journal ] Dragan Gamberger , Nada Lavrac , Goran Krstacic Confirmation rule induction and its applications to coronary heart disease diagnosis and risk group discovery. [Citation Graph (0, 0)][DBLP ] Journal of Intelligent and Fuzzy Systems, 2002, v:12, n:1, pp:35-48 [Journal ] Mitja Jermol , Nada Lavrac , Tanja Urbancic Managing business intelligence in a virtual enterprise: A case study and knowledge management lessons learned. [Citation Graph (0, 0)][DBLP ] Journal of Intelligent and Fuzzy Systems, 2003, v:14, n:3, pp:121-136 [Journal ] Nada Lavrac , Dragan Gamberger , Viktor Jovanoski A Study of Relevance for Learning in Deductive Databases. [Citation Graph (0, 0)][DBLP ] J. Log. Program., 1999, v:40, n:2-3, pp:215-249 [Journal ] Nada Lavrac , Branko Kavsek , Peter A. Flach , Ljupco Todorovski Subgroup Discovery with CN2-SD. [Citation Graph (0, 0)][DBLP ] Journal of Machine Learning Research, 2004, v:5, n:, pp:153-188 [Journal ] Nada Lavrac , Stefan Wrobel Induktive Logikprogrammierung - Grundlagen und Techniken. [Citation Graph (0, 0)][DBLP ] KI, 1996, v:10, n:3, pp:46-54 [Journal ] Nada Lavrac , Bojan Cestnik , Dragan Gamberger , Peter A. Flach Decision Support Through Subgroup Discovery: Three Case Studies and the Lessons Learned. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2004, v:57, n:1-2, pp:115-143 [Journal ] Nada Lavrac , Saso Dzeroski A Reply to Pazzani's Book Review of ``Inductive Logic Programming: Techniques and Applications''. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1996, v:23, n:1, pp:109-111 [Journal ] Nada Lavrac , Hiroshi Motoda , Tom Fawcett Editorial: Data Mining Lessons Learned. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2004, v:57, n:1-2, pp:5-11 [Journal ] Nada Lavrac , Hiroshi Motoda , Tom Fawcett , Robert Holte , Pat Langley , Pieter W. Adriaans Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2004, v:57, n:1-2, pp:13-34 [Journal ] Filip Zelezný , Nada Lavrac Propositionalization-based relational subgroup discovery with RSD. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2006, v:62, n:1-2, pp:33-63 [Journal ] Nada Lavrac , Saso Dzeroski , Masayuki Numao Inductive Logic Programming for Relational Knowledge Discovery. [Citation Graph (0, 0)][DBLP ] New Generation Comput., 1999, v:17, n:1, pp:3-23 [Journal ] Nada Lavrac , Peter A. Flach An extended transformation approach to inductive logic programming. [Citation Graph (0, 0)][DBLP ] ACM Trans. Comput. Log., 2001, v:2, n:4, pp:458-494 [Journal ] Dragan Gamberger , Nada Lavrac Supporting Factors in Descriptive Analysis of Brain Ischaemia. [Citation Graph (0, 0)][DBLP ] AIME, 2007, pp:155-159 [Conf ] Petra Kralj , Nada Lavrac , Dragan Gamberger , Antonija Krstacic Contrast Set Mining for Distinguishing Between Similar Diseases. [Citation Graph (0, 0)][DBLP ] AIME, 2007, pp:109-118 [Conf ] Aleksander Pur , Marko Bohanec , Nada Lavrac , Bojan Cestnik , Marko Debeljak , Anton Gradisek Monitoring Human Resources of a Public Health-Care System Through Intelligent Data Analysis and Visualization. [Citation Graph (0, 0)][DBLP ] AIME, 2007, pp:175-179 [Conf ] Igor Trajkovski , Nada Lavrac Interpreting Gene Expression Data by Searching for Enriched Gene Sets. [Citation Graph (0, 0)][DBLP ] AIME, 2007, pp:144-148 [Conf ] Damjan Demsar , Igor Mozetic , Nada Lavrac Collaboration Opportunity Finder. [Citation Graph (0, 0)][DBLP ] Virtual Enterprises and Collaborative Networks, 2007, pp:179-186 [Conf ] Monika Záková , Filip Zelezný , Javier A. Garcia-Sedano , Cyril Masia Tissot , Nada Lavrac , Petr Kremen , Javier Molina Relational Data Mining Applied to Virtual Engineering of Product Designs. [Citation Graph (0, 0)][DBLP ] ILP, 2006, pp:439-453 [Conf ] Petra Kralj , Nada Lavrac , Dragan Gamberger , Antonija Krstacic Contrast Set Mining Through Subgroup Discovery Applied to Brain Ischaemina Data. [Citation Graph (0, 0)][DBLP ] PAKDD, 2007, pp:579-586 [Conf ] Igor Trajkovski , Nada Lavrac Efficient Generation of Biologically Relevant Enriched Gene Sets. [Citation Graph (0, 0)][DBLP ] ISBRA, 2007, pp:248-259 [Conf ] Nada Lavrac , Marko Bohanec , Aleksander Pur , Bojan Cestnik , Marko Debeljak , Andrej Kobler Data mining and visualization for decision support and modeling of public health-care resources. [Citation Graph (0, 0)][DBLP ] Journal of Biomedical Informatics, 2007, v:40, n:4, pp:438-447 [Journal ] Nada Lavrac , Peter Ljubic , Tanja Urbani , Gregor Papa , Mitja Jermol , S. Bollhalter Trust Modeling for Networked Organizations Using Reputation and Collaboration Estimates. [Citation Graph (0, 0)][DBLP ] IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2007, v:37, n:3, pp:429-439 [Journal ] Advances in Class Noise Detection. [Citation Graph (, )][DBLP ] On the Design of Knowledge Discovery Services Design Patterns and Their Application in a Use Case Implementation. [Citation Graph (, )][DBLP ] Handling Unknown and Imprecise Attribute Values in Propositional Rule Learning: A Feature-Based Approach. [Citation Graph (, )][DBLP ] Advancing Topic Ontology Learning through Term Extraction. [Citation Graph (, )][DBLP ] Semi-supervised Constrained Clustering: An Expert-Guided Data Analysis Methodology. [Citation Graph (, )][DBLP ] Relational Descriptive Analysis of Gene Expression Data. [Citation Graph (, )][DBLP ] SolEuNet: Selected Data Mining Techniques and Applications. [Citation Graph (, )][DBLP ] Ripple Down Rule learning for automated word lemmatisation. [Citation Graph (, )][DBLP ] Clinical data analysis based on iterative subgroup discovery: experiments in brain ischaemia data analysis. [Citation Graph (, )][DBLP ] Search in 0.130secs, Finished in 0.136secs