The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Gregory L. McColm: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Gregory L. McColm
    The Dimension of the Negation of Transitive Closure. [Citation Graph (1, 0)][DBLP]
    J. Symb. Log., 1995, v:60, n:2, pp:392-414 [Journal]
  2. Natasa Jonoska, Gregory L. McColm, Ana Staninska
    Spectrum of a Pot for DNA Complexes. [Citation Graph (0, 0)][DBLP]
    DNA, 2006, pp:83-94 [Conf]
  3. Natasa Jonoska, Gregory L. McColm, Ana Staninska
    Expectation and Variance of Self-assembled Graph Structures. [Citation Graph (0, 0)][DBLP]
    DNA, 2005, pp:144-157 [Conf]
  4. Erich Grädel, Gregory L. McColm
    Hierarchies in Transitive Closure Logic, Stratified Datalog and Infinitary Logic [Citation Graph (0, 0)][DBLP]
    FOCS, 1992, pp:167-176 [Conf]
  5. Erich Grädel, Gregory L. McColm
    Deterministic vs. Nondeterministic Transitive Closure Logic [Citation Graph (0, 0)][DBLP]
    LICS, 1992, pp:58-63 [Conf]
  6. Gregory L. McColm
    Zero-One Laws for Gilbert Random Graphs. [Citation Graph (0, 0)][DBLP]
    LICS, 1996, pp:360-369 [Conf]
  7. Natasa Jonoska, Gregory L. McColm
    A Computational Model for Self-assembling Flexible Tiles. [Citation Graph (0, 0)][DBLP]
    UC, 2005, pp:142-156 [Conf]
  8. Natasa Jonoska, Gregory L. McColm
    Flexible Versus Rigid Tile Assembly. [Citation Graph (0, 0)][DBLP]
    UC, 2006, pp:139-151 [Conf]
  9. Erich Grädel, Gregory L. McColm
    Hierarchies in Transitive Closure Logic, Stratified Datalog and Infinitary Logic. [Citation Graph (0, 0)][DBLP]
    Ann. Pure Appl. Logic, 1996, v:77, n:2, pp:169-199 [Journal]
  10. Gregory L. McColm
    Parametrization over Inductive Relations of a Bounded Number of Variables. [Citation Graph (0, 0)][DBLP]
    Ann. Pure Appl. Logic, 1990, v:48, n:2, pp:103-134 [Journal]
  11. Gregory L. McColm
    When Is Arithmetic Possible? [Citation Graph (0, 0)][DBLP]
    Ann. Pure Appl. Logic, 1990, v:50, n:1, pp:29-51 [Journal]
  12. Gregory L. McColm
    Threshold Functions for Random Graphs on a Line Segment. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 2004, v:13, n:3, pp:373-387 [Journal]
  13. Gregory L. McColm
    MSO zero-one laws on random labelled acyclic graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2002, v:254, n:1-3, pp:331-347 [Journal]
  14. Gregory L. McColm
    On the structure of random unlabelled acyclic graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2004, v:277, n:1-3, pp:147-170 [Journal]
  15. Erich Grädel, Gregory L. McColm
    On the Power of Deterministic Transitive Closures [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 1995, v:119, n:1, pp:129-135 [Journal]
  16. Gregory L. McColm
    Pebble Games and Subroutines in Least Fixed Point Logic. [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 1995, v:122, n:2, pp:201-220 [Journal]
  17. Gregory L. McColm
    A Ramseyian theorem on products of trees. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1991, v:57, n:1, pp:68-75 [Journal]
  18. Gregory L. McColm
    Guarded Quantification in Least Fixed Point Logic. [Citation Graph (0, 0)][DBLP]
    Journal of Logic, Language and Information, 2004, v:13, n:1, pp:61-110 [Journal]
  19. W. Edwin Clark, Gregory L. McColm, W. Richard Stark
    On the Complexity of Deadlock-Free Programs on a Ring of Processors. [Citation Graph (0, 0)][DBLP]
    J. Parallel Distrib. Comput., 1992, v:16, n:1, pp:67-71 [Journal]
  20. Gregory L. McColm
    Some Restrictions on Simple Fixed Points of the Integers. [Citation Graph (0, 0)][DBLP]
    J. Symb. Log., 1989, v:54, n:4, pp:1324-1345 [Journal]
  21. Gregory L. McColm
    Dimension Versus Number of Variables, and Connectivity, too. [Citation Graph (0, 0)][DBLP]
    Math. Log. Q., 1995, v:41, n:, pp:111-134 [Journal]
  22. Gregory L. McColm
    Eventualy Periodicity and "One-Dimensional" Queries. [Citation Graph (0, 0)][DBLP]
    Notre Dame Journal of Formal Logic, 1992, v:33, n:2, pp:273-290 [Journal]
  23. Gregory L. McColm
    First order zero-one laws for random graphs on the circle. [Citation Graph (0, 0)][DBLP]
    Random Struct. Algorithms, 1999, v:14, n:3, pp:239-266 [Journal]

  24. Describing Self-assembly of Nanostructures. [Citation Graph (, )][DBLP]


Search in 0.006secs, Finished in 0.008secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002