The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Saso Dzeroski: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Luc De Raedt, Saso Dzeroski
    First-Order jk-Clausal Theories are PAC-Learnable. [Citation Graph (4, 0)][DBLP]
    Artif. Intell., 1994, v:70, n:1-2, pp:375-392 [Journal]
  2. Saso Dzeroski, Nada Lavrac
    Inductive Learning in Deductive Databases. [Citation Graph (2, 15)][DBLP]
    IEEE Trans. Knowl. Data Eng., 1993, v:5, n:6, pp:939-949 [Journal]
  3. Nada Lavrac, Saso Dzeroski
    Background Knowledge and Declarative Bias in Inductive Concept Learning. [Citation Graph (1, 0)][DBLP]
    AII, 1992, pp:51-71 [Conf]
  4. Nada Lavrac, Saso Dzeroski, Marko Grobelnik
    Learning Nonrecursive Definitions of Relations with LINUS. [Citation Graph (1, 0)][DBLP]
    EWSL, 1991, pp:265-281 [Conf]
  5. Saso Dzeroski, Nada Lavrac
    Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL. [Citation Graph (1, 0)][DBLP]
    ML, 1991, pp:399-402 [Conf]
  6. Saso Dzeroski
    Relational Reinforcement Learning for Agents in Worlds with Objects. [Citation Graph (0, 0)][DBLP]
    Adaptive Agents and Multi-Agents Systems, 2002, pp:306-322 [Conf]
  7. Saso Dzeroski, George Potamias, Vassilis Moustakis, Giorgos Charissis
    Automated Revision of Expert Rules for Treating Acute Abdominal Pain in Children. [Citation Graph (0, 0)][DBLP]
    AIME, 1997, pp:98-109 [Conf]
  8. Blaz Zupan, Saso Dzeroski
    Acquiring and Validating Background Knowledge for Machine Learning Using Function Decomposition. [Citation Graph (0, 0)][DBLP]
    AIME, 1997, pp:86-97 [Conf]
  9. Dragan Gamberger, Nada Lavrac, Saso Dzeroski
    Noise Elimination in Inductive Concept Learning: A Case Study in Medical Diagnosois. [Citation Graph (0, 0)][DBLP]
    ALT, 1996, pp:199-212 [Conf]
  10. Kurt Driessens, Saso Dzeroski
    Combining Model-Based and Instance-Based Learning for First Order Regression. [Citation Graph (0, 0)][DBLP]
    BNAIC, 2005, pp:341-342 [Conf]
  11. Saso Dzeroski, Ljupco Todorovski, Peter Ljubic
    Inductive Queries on Polynomial Equations. [Citation Graph (0, 0)][DBLP]
    Constraint-Based Mining and Inductive Databases, 2004, pp:127-154 [Conf]
  12. Saso Dzeroski, Stephen Muggleton, Stuart J. Russell
    PAC-Learnability of Determinate Logic Programs. [Citation Graph (0, 0)][DBLP]
    COLT, 1992, pp:128-135 [Conf]
  13. Nada Lavrac, Filip Zelezný, Saso Dzeroski
    Local Patterns: Theory and Practice of Constraint-Based Relational Subgroup Discovery. [Citation Graph (0, 0)][DBLP]
    Local Pattern Detection, 2004, pp:71-88 [Conf]
  14. Saso Dzeroski, Ljupco Todorovski, Peter Ljubic
    Inductive Databases of Polynomial Equations. [Citation Graph (0, 0)][DBLP]
    DaWaK, 2004, pp:159-168 [Conf]
  15. Saso Dzeroski, Pat Langley
    Computational Discovery of Communicable Knowledge: Symposium Report. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2001, pp:45-49 [Conf]
  16. Saso Dzeroski, Ljupco Todorovski, Peter Ljubic
    Using Constraints in Discovering Dynamics. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2003, pp:297-305 [Conf]
  17. Saso Dzeroski, Ljupco Todorovski, Boris Zmazek, Janja Vaupotic, Ivan Kobal
    Modelling Soil Radon Concentration for Earthquake Prediction. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2003, pp:87-99 [Conf]
  18. Taneli Mielikäinen, Pance Panov, Saso Dzeroski
    Itemset Support Queries Using Frequent Itemsets and Their Condensed Representations. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2006, pp:161-172 [Conf]
  19. Ljupco Todorovski, Saso Dzeroski
    Theory Revision in Equation Discovery. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2001, pp:389-400 [Conf]
  20. Saso Dzeroski, Nico Jacobs, Martín Molina, Carlos Moure
    ILP Experiments in Detecting Traffic Problems. [Citation Graph (0, 0)][DBLP]
    ECML, 1998, pp:61-66 [Conf]
  21. Saso Dzeroski, Stephen Muggleton, Stuart J. Russell
    Learnability of Constrained Logic Programs. [Citation Graph (0, 0)][DBLP]
    ECML, 1993, pp:342-347 [Conf]
  22. Saso Dzeroski, Igor Petrovski
    Discovering Dynamics with Genetic Programming. [Citation Graph (0, 0)][DBLP]
    ECML, 1994, pp:347-350 [Conf]
  23. Saso Dzeroski, Ljupco Todorovski, Tanja Urbancic
    Handling Real Numbers in ILP: A Step Towards Better Behavioural Clones (Extended Abstract). [Citation Graph (0, 0)][DBLP]
    ECML, 1995, pp:283-286 [Conf]
  24. Ljupco Todorovski, Hendrik Blockeel, Saso Dzeroski
    Ranking with Predictive Clustering Trees. [Citation Graph (0, 0)][DBLP]
    ECML, 2002, pp:444-455 [Conf]
  25. Ljupco Todorovski, Saso Dzeroski
    Using Domain Knowledge on Population Dynamics Modeling for Equation Discovery. [Citation Graph (0, 0)][DBLP]
    ECML, 2001, pp:478-490 [Conf]
  26. Ljupco Todorovski, Peter Ljubic, Saso Dzeroski
    Inducing Polynomial Equations for Regression. [Citation Graph (0, 0)][DBLP]
    ECML, 2004, pp:441-452 [Conf]
  27. Bernard Zenko, Saso Dzeroski
    Stacking with an Extended Set of Meta-level Attributes and MLR. [Citation Graph (0, 0)][DBLP]
    ECML, 2002, pp:493-504 [Conf]
  28. Jan Struyf, Saso Dzeroski, Hendrik Blockeel, Amanda Clare
    Hierarchical Multi-classification with Predictive Clustering Trees in Functional Genomics. [Citation Graph (0, 0)][DBLP]
    EPIA, 2005, pp:272-283 [Conf]
  29. Bernard Zenko, Ljupco Todorovski, Saso Dzeroski
    A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods. [Citation Graph (0, 0)][DBLP]
    ICDM, 2001, pp:669-670 [Conf]
  30. Kurt Driessens, Saso Dzeroski
    Integrating Experimentation and Guidance in Relational Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:115-122 [Conf]
  31. Kurt Driessens, Saso Dzeroski
    Combining model-based and instance-based learning for first order regression. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:193-200 [Conf]
  32. Saso Dzeroski, Luc De Raedt, Hendrik Blockeel
    Relational Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    ICML, 1998, pp:136-143 [Conf]
  33. Saso Dzeroski, Ljupco Todorovski
    Discovering Dynamics. [Citation Graph (0, 0)][DBLP]
    ICML, 1993, pp:97-103 [Conf]
  34. Saso Dzeroski, Bernard Zenko
    Is Combining Classifiers Better than Selecting the Best One. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:123-130 [Conf]
  35. Pat Langley, Javier Nicolás Sánchez, Ljupco Todorovski, Saso Dzeroski
    Inducing Process Models from Continuous Data. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:347-354 [Conf]
  36. Ljupco Todorovski, Saso Dzeroski
    Declarative Bias in Equation Discovery. [Citation Graph (0, 0)][DBLP]
    ICML, 1997, pp:376-384 [Conf]
  37. Ljupco Todorovski, Saso Dzeroski, Ashwin Srinivasan, Jonathan Whiteley, David Gavaghan
    Discovering the Structure of Partial Differential Equations from Example Behaviour. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:991-998 [Conf]
  38. Ljupco Todorovski, Saso Dzeroski
    Using Domain Specific Knowledge for Automated Modeling. [Citation Graph (0, 0)][DBLP]
    IDA, 2003, pp:48-59 [Conf]
  39. Yannis Dimopoulos, Saso Dzeroski, Antonis C. Kakas
    Integrating Explanatory and Descriptive Learning in ILP. [Citation Graph (0, 0)][DBLP]
    IJCAI (2), 1997, pp:900-907 [Conf]
  40. Luc De Raedt, Nada Lavrac, Saso Dzeroski
    Multiple Predicate Learning. [Citation Graph (0, 0)][DBLP]
    IJCAI, 1993, pp:1037-1043 [Conf]
  41. Saso Dzeroski, Tomaz Erjavec
    Induction of Slovene Nominal Paradigms. [Citation Graph (0, 0)][DBLP]
    ILP, 1997, pp:141-148 [Conf]
  42. Saso Dzeroski, Hendrik Blockeel, Boris Kompare, Stefan Kramer, Bernhard Pfahringer, Wim Van Laer
    Experiments in Predicting Biodegradability. [Citation Graph (0, 0)][DBLP]
    ILP, 1999, pp:80-91 [Conf]
  43. James Cussens, Saso Dzeroski, Tomaz Erjavec
    Morphosyntactic Tagging of Slovene Using Progol. [Citation Graph (0, 0)][DBLP]
    ILP, 1999, pp:68-79 [Conf]
  44. Saso Dzeroski
    Learning in Rich Representations: Inductive Logic Programming and Computational Scientific Discovery. [Citation Graph (0, 0)][DBLP]
    ILP, 2002, pp:346-349 [Conf]
  45. Saso Dzeroski, Nico Jacobs, Martín Molina, Carlos Moure, Stephen Muggleton, Wim Van Laer
    Detecting Traffic Problems with ILP. [Citation Graph (0, 0)][DBLP]
    ILP, 1998, pp:281-290 [Conf]
  46. Saso Dzeroski, Luc De Raedt, Hendrik Blockeel
    Relational Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    ILP, 1998, pp:11-22 [Conf]
  47. Saso Dzeroski, Steffen Schulze-Kremer, Karsten R. Heidtke, Karsten Siems, Dietrich Wettschereck
    Applying ILP to Diterpene Structure Elucidation from 13C NMR Spectra. [Citation Graph (0, 0)][DBLP]
    Inductive Logic Programming Workshop, 1996, pp:41-54 [Conf]
  48. Suresh Manandhar, Saso Dzeroski, Tomaz Erjavec
    Learning Multilingual Morphology with CLOG. [Citation Graph (0, 0)][DBLP]
    ILP, 1998, pp:135-144 [Conf]
  49. Celine Vens, Anneleen Van Assche, Hendrik Blockeel, Saso Dzeroski
    First Order Random Forests with Complex Aggregates. [Citation Graph (0, 0)][DBLP]
    ILP, 2004, pp:323-340 [Conf]
  50. Wim Van Laer, Luc De Raedt, Saso Dzeroski
    On Multi-class Problems and Discretization in Inductive Logic Programming. [Citation Graph (0, 0)][DBLP]
    ISMIS, 1997, pp:277-286 [Conf]
  51. Saso Dzeroski
    From Inductive Logic Programming to Relational Data Mining. [Citation Graph (0, 0)][DBLP]
    JELIA, 2006, pp:1-14 [Conf]
  52. Saso Dzeroski
    Knowledge Discovery in a Water Quality Database. [Citation Graph (0, 0)][DBLP]
    KDD, 1995, pp:81-86 [Conf]
  53. Saso Dzeroski, Ljupco Todorovski, Peter Ljubic
    Inductive Databases of Polynomial Equations. [Citation Graph (0, 0)][DBLP]
    KDID, 2003, pp:28-43 [Conf]
  54. Jan Struyf, Saso Dzeroski
    Constraint Based Induction of Multi-objective Regression Trees. [Citation Graph (0, 0)][DBLP]
    KDID, 2005, pp:222-233 [Conf]
  55. Bernard Zenko, Saso Dzeroski, Jan Struyf
    Learning Predictive Clustering Rules. [Citation Graph (0, 0)][DBLP]
    KDID, 2005, pp:234-250 [Conf]
  56. Saso Dzeroski, James Cussens, Suresh Manandhar
    An Introduction to Inductive Logic Programming and Learning Language in Logic. [Citation Graph (0, 0)][DBLP]
    Learning Language in Logic, 1999, pp:3-35 [Conf]
  57. Saso Dzeroski, Tomaz Erjavec
    Learning to Lemmatise Slovene Words. [Citation Graph (0, 0)][DBLP]
    Learning Language in Logic, 1999, pp:69-88 [Conf]
  58. Saso Dzeroski, Bernard Zenko
    Stacking with Multi-response Model Trees. [Citation Graph (0, 0)][DBLP]
    Multiple Classifier Systems, 2002, pp:201-211 [Conf]
  59. Hendrik Blockeel, Saso Dzeroski, Jasna Grbovic
    Simultaneous Prediction of Mulriple Chemical Parameters of River Water Quality with TILDE. [Citation Graph (0, 0)][DBLP]
    PKDD, 1999, pp:32-40 [Conf]
  60. Hendrik Blockeel, Leander Schietgat, Jan Struyf, Saso Dzeroski, Amanda Clare
    Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics. [Citation Graph (0, 0)][DBLP]
    PKDD, 2006, pp:18-29 [Conf]
  61. Dimitar Hristovski, Saso Dzeroski, Borut Peterlin, Anamarija Rozic-Hristovski
    Supporting Discovery in Medicine by Association Rule Mining of Bibliographic Databases. [Citation Graph (0, 0)][DBLP]
    PKDD, 2000, pp:446-451 [Conf]
  62. Ljupco Todorovski, Saso Dzeroski
    Combining Multiple Models with Meta Decision Trees. [Citation Graph (0, 0)][DBLP]
    PKDD, 2000, pp:54-64 [Conf]
  63. Ljupco Todorovski, Saso Dzeroski
    Experiments in Meta-level Learning with ILP. [Citation Graph (0, 0)][DBLP]
    PKDD, 1999, pp:98-106 [Conf]
  64. Saso Dzeroski
    Handling Imperfetc Data in Inductive Logic Programming. [Citation Graph (0, 0)][DBLP]
    SCAI, 1993, pp:111-125 [Conf]
  65. Saso Dzeroski
    Learning First-order Clausal Theories in the Presence of Noise. [Citation Graph (0, 0)][DBLP]
    SCAI, 1995, pp:51-60 [Conf]
  66. Nada Lavrac, Saso Dzeroski, Vladimir Pirnat, Viljem Krizman
    Learning Rules for Early Diagnosis of Rheumatic Diseases. [Citation Graph (0, 0)][DBLP]
    SCAI, 1991, pp:138-149 [Conf]
  67. Hendrik Blockeel, Saso Dzeroski, Boris Kompare, Stefan Kramer, Bernhard Pfahringer, Wim Van Laer
    Experiments In Predicting Biodegradability. [Citation Graph (0, 0)][DBLP]
    Applied Artificial Intelligence, 2004, v:18, n:2, pp:157-181 [Journal]
  68. Saso Dzeroski, Steffen Schulze-Kremer, Karsten R. Heidtke, Karsten Siems, Dietrich Wettschereck, Hendrik Blockeel
    Diterpene Structure Elucidation from 13CNMR Spectra with Inductive Logic Programming. [Citation Graph (0, 0)][DBLP]
    Applied Artificial Intelligence, 1998, v:12, n:5, pp:363-383 [Journal]
  69. Tomaz Erjavec, Saso Dzeroski
    Machine Learning of Morphosyntactic Structure: Lemmatizing Unknown Slovene Words. [Citation Graph (0, 0)][DBLP]
    Applied Artificial Intelligence, 2004, v:18, n:1, pp:17-41 [Journal]
  70. Dragan Gamberger, Nada Lavrac, Saso Dzeroski
    Noise Detection and Elimination in data Proprocessing: Experiments in Medical Domains. [Citation Graph (0, 0)][DBLP]
    Applied Artificial Intelligence, 2000, v:14, n:2, pp:205-223 [Journal]
  71. Nada Lavrac, Saso Dzeroski, Vladimir Pirnat, Viljem Krizman
    The utility of background knowledge in learning medical diagnostic rules. [Citation Graph (0, 0)][DBLP]
    Applied Artificial Intelligence, 1993, v:7, n:3, pp:273-293 [Journal]
  72. Joaquim Comas, Saso Dzeroski, Karina Gibert, Ignasi R.-Roda, Miquel Sànchez-Marrè
    Knowledge discovery by means of inductive methods in wastewater treatment plannt data. [Citation Graph (0, 0)][DBLP]
    AI Commun., 2001, v:14, n:1, pp:45-62 [Journal]
  73. Nada Lavrac, Irene Weber, Darko Zupanic, Dimitar Kazakov, Olga Stepánková, Saso Dzeroski
    ILPNET Repositories on WWW: Inductive Logic Programming Systems, Datasets and Bibliography. [Citation Graph (0, 0)][DBLP]
    AI Commun., 1996, v:9, n:4, pp:157-206 [Journal]
  74. Saso Dzeroski, Damjan Demsar, Jasna Grbovic
    Predicting Chemical Parameters of River Water Quality from Bioindicator Data. [Citation Graph (0, 0)][DBLP]
    Appl. Intell., 2000, v:13, n:1, pp:7-17 [Journal]
  75. Blaz Zupan, Saso Dzeroski
    Acquiring background knowledge for machine learning using function decomposition: a case study in rheumatology. [Citation Graph (0, 0)][DBLP]
    Artificial Intelligence in Medicine, 1998, v:14, n:1-2, pp:101-117 [Journal]
  76. Saso Dzeroski, Nada Lavrac
    Editorial. [Citation Graph (0, 0)][DBLP]
    Data Min. Knowl. Discov., 1999, v:3, n:1, pp:5-6 [Journal]
  77. Saso Dzeroski, Ljupco Todorovski
    Discovering Dynamics: From Inductive Logic Programming to Machine Discovery. [Citation Graph (0, 0)][DBLP]
    J. Intell. Inf. Syst., 1995, v:4, n:1, pp:89-108 [Journal]
  78. Peter A. Flach, Saso Dzeroski
    Editorial: Inductive Logic Programming is Coming of Age. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2001, v:44, n:3, pp:207-209 [Journal]
  79. Kurt Driessens, Saso Dzeroski
    Integrating Guidance into Relational Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2004, v:57, n:3, pp:271-304 [Journal]
  80. Saso Dzeroski, Luc De Raedt, Kurt Driessens
    Relational Reinforcement Learning. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2001, v:43, n:1/2, pp:7-52 [Journal]
  81. Saso Dzeroski, Bernard Zenko
    Is Combining Classifiers with Stacking Better than Selecting the Best One? [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2004, v:54, n:3, pp:255-273 [Journal]
  82. Nada Lavrac, Saso Dzeroski
    A Reply to Pazzani's Book Review of ``Inductive Logic Programming: Techniques and Applications''. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1996, v:23, n:1, pp:109-111 [Journal]
  83. Ljupco Todorovski, Saso Dzeroski
    Combining Classifiers with Meta Decision Trees. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2003, v:50, n:3, pp:223-249 [Journal]
  84. Anneleen Van Assche, Celine Vens, Hendrik Blockeel, Saso Dzeroski
    First order random forests: Learning relational classifiers with complex aggregates. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2006, v:64, n:1-3, pp:149-182 [Journal]
  85. Ivan Bratko, Saso Dzeroski
    Engineering Applications of ILP. [Citation Graph (0, 0)][DBLP]
    New Generation Comput., 1995, v:13, n:3&4, pp:313-333 [Journal]
  86. Nada Lavrac, Saso Dzeroski, Masayuki Numao
    Inductive Logic Programming for Relational Knowledge Discovery. [Citation Graph (0, 0)][DBLP]
    New Generation Comput., 1999, v:17, n:1, pp:3-23 [Journal]
  87. Jörg-Uwe Kietz, Saso Dzeroski
    Inductive Logic Programming and Learnability. [Citation Graph (0, 0)][DBLP]
    SIGART Bulletin, 1994, v:5, n:1, pp:22-32 [Journal]
  88. Hendrik Blockeel, Saso Dzeroski
    Multi-Relational Data Mining 2005: workshop report. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2005, v:7, n:2, pp:126-128 [Journal]
  89. Saso Dzeroski
    Multi-relational data mining: an introduction. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2003, v:5, n:1, pp:1-16 [Journal]
  90. Saso Dzeroski, Hendrik Blockeel
    Multi-relational data mining 2004: workshop report. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2004, v:6, n:2, pp:140-141 [Journal]
  91. Saso Dzeroski, Luc De Raedt
    Multi-Relational Data Mining: a Workshop Report. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2002, v:4, n:2, pp:122-124 [Journal]
  92. Saso Dzeroski, Luc De Raedt
    Multi-relational data mining: the current frontiers. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2003, v:5, n:1, pp:100-101 [Journal]
  93. Saso Dzeroski, Luc De Raedt, Stefan Wrobel
    Multirelational data mining 2003: workshop report. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2003, v:5, n:2, pp:200-202 [Journal]
  94. Saso Dzeroski, Bernard Zenko, Marko Debeljak
    A report on the fourth international workshop on environmental applications of machine learning (EAML 2004). [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2004, v:6, n:2, pp:155-156 [Journal]
  95. Saso Dzeroski, Pat Langley, Ljupco Todorovski
    Computational Discovery of Scientific Knowledge. [Citation Graph (0, 0)][DBLP]
    Computational Discovery of Scientific Knowledge, 2007, pp:1-14 [Conf]
  96. Dimitar Hristovski, Borut Peterlin, Saso Dzeroski, Janez Stare
    Literature Based Discovery Support System and Its Application to Disease Gene Identification. [Citation Graph (0, 0)][DBLP]
    Computational Discovery of Scientific Knowledge, 2007, pp:307-326 [Conf]
  97. Ljupco Todorovski, Saso Dzeroski
    Integrating Domain Knowledge in Equation Discovery. [Citation Graph (0, 0)][DBLP]
    Computational Discovery of Scientific Knowledge, 2007, pp:69-97 [Conf]
  98. Jan Struyf, Saso Dzeroski
    Clustering Trees with Instance Level Constraints. [Citation Graph (0, 0)][DBLP]
    ECML, 2007, pp:359-370 [Conf]
  99. Annalisa Appice, Saso Dzeroski
    Stepwise Induction of Multi-target Model Trees. [Citation Graph (0, 0)][DBLP]
    ECML, 2007, pp:502-509 [Conf]
  100. Dragi Kocev, Celine Vens, Jan Struyf, Saso Dzeroski
    Ensembles of Multi-Objective Decision Trees. [Citation Graph (0, 0)][DBLP]
    ECML, 2007, pp:624-631 [Conf]
  101. Pance Panov, Saso Dzeroski
    Combining Bagging and Random Subspaces to Create Better Ensembles. [Citation Graph (0, 0)][DBLP]
    IDA, 2007, pp:118-129 [Conf]
  102. Saso Dzeroski
    Towards a General Framework for Data Mining. [Citation Graph (0, 0)][DBLP]
    KDID, 2006, pp:259-300 [Conf]
  103. Saso Dzeroski, Valentin Gjorgjioski, Ivica Slavkov, Jan Struyf
    Analysis of Time Series Data with Predictive Clustering Trees. [Citation Graph (0, 0)][DBLP]
    KDID, 2006, pp:63-80 [Conf]
  104. Dragi Kocev, Jan Struyf, Saso Dzeroski
    Beam Search Induction and Similarity Constraints for Predictive Clustering Trees. [Citation Graph (0, 0)][DBLP]
    KDID, 2006, pp:134-151 [Conf]
  105. Annalisa Appice, Saso Dzeroski
    Inducing Multi-Target Model Trees in a Stepwise Fashion. [Citation Graph (0, 0)][DBLP]
    SEBD, 2007, pp:16-27 [Conf]
  106. Saso Dzeroski, Jan Struyf
    5th international workshop on knowledge discovery in inductive databases (KDID'06): workshop report. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2007, v:9, n:1, pp:56-58 [Journal]

  107. Detection of Visual Concepts and Annotation of Images Using Predictive Clustering Trees. [Citation Graph (, )][DBLP]


  108. Towards an Ontology of Data Mining Investigations. [Citation Graph (, )][DBLP]


  109. OntoDM: An Ontology of Data Mining. [Citation Graph (, )][DBLP]


  110. Rule Ensembles for Multi-target Regression. [Citation Graph (, )][DBLP]


  111. Predicting chemical parameters of the water from diatom abudance in lake Prespa and its tributaries. [Citation Graph (, )][DBLP]


  112. Learning Classification Rules for Multiple Target Attributes. [Citation Graph (, )][DBLP]


  113. A Minimal Description Length Scheme for Polynomial Regression. [Citation Graph (, )][DBLP]


  114. Predicting gene function using hierarchical multi-label decision tree ensembles. [Citation Graph (, )][DBLP]


Search in 0.012secs, Finished in 0.020secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002