The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Van Bang Le: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Andreas Brandstädt, Van Bang Le, Suhail Mahfud
    New Applications of Clique Separator Decomposition for the Maximum Weight Stable Set Problem. [Citation Graph (0, 0)][DBLP]
    FCT, 2005, pp:516-527 [Conf]
  2. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le
    Tree Spanners on Chordal Graphs: Complexity, Algorithms, Open Problems. [Citation Graph (0, 0)][DBLP]
    ISAAC, 2002, pp:163-174 [Conf]
  3. Andreas Brandstädt, Van Bang Le
    Split-Perfect Graphs: Characterizations and Algorithmic Use. [Citation Graph (0, 0)][DBLP]
    WG, 2000, pp:71-82 [Conf]
  4. Van Bang Le, Bert Randerath
    On Stable Cutsets in Line Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 2001, pp:263-271 [Conf]
  5. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le, Ryuhei Uehara
    Tree Spanners for Bipartite Graphs and Probe Interval Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 2003, pp:106-118 [Conf]
  6. Jirí Fiala, Klaus Jansen, Van Bang Le, Eike Seidel
    Graph Subcolorings: Complexity and Algorithms. [Citation Graph (0, 0)][DBLP]
    WG, 2001, pp:154-165 [Conf]
  7. Van Bang Le, Raffaele Mosca, Haiko Müller
    On Stable Cutsets in Claw-Free Graphs and Planar Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 2005, pp:163-174 [Conf]
  8. Luitpold Babel, Andreas Brandstädt, Van Bang Le
    Recognizing the P4-structure of Bipartite Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1999, v:93, n:2-3, pp:157-168 [Journal]
  9. Andreas Brandstädt, Feodor F. Dragan, Van Bang Le, Thomas Szymczak
    On stable cutsets in graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2000, v:105, n:1-3, pp:39-50 [Journal]
  10. Andreas Brandstädt, Chính T. Hoàng, Van Bang Le
    Stability number of bull- and chair-free graphs revisited. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:131, n:1, pp:39-50 [Journal]
  11. Andreas Brandstädt, Van Bang Le
    Recognizing the P4-structure of Block Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2000, v:99, n:1-3, pp:349-366 [Journal]
  12. Andreas Brandstädt, Van Bang Le
    Tree- and Forest-perfect Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1999, v:95, n:1-3, pp:141-162 [Journal]
  13. Andreas Brandstädt, Van Bang Le, Thomas Szymczak
    The Complexity of some Problems Related to Graph 3-colorability. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1998, v:89, n:1-3, pp:59-73 [Journal]
  14. Van Bang Le
    Bipartite-perfect Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:127, n:3, pp:581-599 [Journal]
  15. Hoàng-Oanh Le, Van Bang Le, Haiko Müller
    Splitting a graph into disjoint induced paths or cycles. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:131, n:1, pp:199-212 [Journal]
  16. Andreas Brandstädt, Peter L. Hammer, Van Bang Le, Vadim V. Lozin
    Bisplit graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2005, v:299, n:1-3, pp:11-32 [Journal]
  17. Chính T. Hoàng, Van Bang Le
    On P4-transversals of perfect graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2000, v:216, n:1-3, pp:195-210 [Journal]
  18. Van Bang Le, Jeremy Spinrad
    Consequences of an algorithm for bridged graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2004, v:280, n:1-3, pp:271-274 [Journal]
  19. Luitpold Babel, Andreas Brandstädt, Van Bang Le
    Recognizing the P4-structure of claw-free graphs and a larger graph class. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics & Theoretical Computer Science, 2002, v:5, n:1, pp:127-146 [Journal]
  20. Chính T. Hoàng, Van Bang Le
    P4-Colorings and P4-Bipartite Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics & Theoretical Computer Science, 2001, v:4, n:2, pp:109-122 [Journal]
  21. Andreas Brandstädt, Van Bang Le
    Structure and linear time recognition of 3-leaf powers. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2006, v:98, n:4, pp:133-138 [Journal]
  22. Andreas Brandstädt, Hoàng-Oanh Le, Van Bang Le
    On alpha-redundant vertices in P5-free graphs. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2002, v:82, n:3, pp:119-122 [Journal]
  23. Andreas Brandstädt, Van Bang Le, H. N. de Ridder
    Efficient robust algorithms for the Maximum Weight Stable Set Problem in chair-free graph classes. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2004, v:89, n:4, pp:165-173 [Journal]
  24. Hoàng-Oanh Le, Van Bang Le
    The NP-completeness of (1, r)-subcolorability of cubic graphs. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2002, v:81, n:3, pp:157-162 [Journal]
  25. Hoàng-Oanh Le, Van Bang Le
    Optimal tree 3-spanners in directed path graphs. [Citation Graph (0, 0)][DBLP]
    Networks, 1999, v:34, n:2, pp:81-87 [Journal]
  26. Andreas Brandstädt, Van Bang Le
    Split-Perfect Graphs: Characterizations and Algorithmic Use. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 2004, v:17, n:3, pp:341-360 [Journal]
  27. Chính T. Hoàng, Van Bang Le
    Recognizing Perfect 2-Split Graphs. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 2000, v:13, n:1, pp:48-55 [Journal]
  28. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le
    Tree spanners on chordal graphs: complexity and algorithms. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2004, v:310, n:1-3, pp:329-354 [Journal]
  29. Van Bang Le, Bert Randerath
    On stable cutsets in line graphs. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2003, v:1, n:301, pp:463-475 [Journal]
  30. Andreas Brandstädt, Van Bang Le, Suhail Mahfud
    New applications of clique separator decomposition for the Maximum Weight Stable Set problem. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2007, v:370, n:1-3, pp:229-239 [Journal]
  31. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le, Ryuhei Uehara
    Tree Spanners for Bipartite Graphs and Probe Interval Graphs. [Citation Graph (0, 0)][DBLP]
    Algorithmica, 2007, v:47, n:1, pp:27-51 [Journal]
  32. Andreas Brandstädt, Van Bang Le, Thomas Szymczak
    Duchet-type theorems for powers of HHD-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:177, n:1-3, pp:9-16 [Journal]
  33. Van Bang Le
    Gallai graphs and anti-Gallai graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1996, v:159, n:1-3, pp:179-189 [Journal]

  34. Path-Bicolorable Graphs. [Citation Graph (, )][DBLP]


  35. Probe Ptolemaic Graphs. [Citation Graph (, )][DBLP]


  36. Linear-time certifying recognition for partitioned probe cographs. [Citation Graph (, )][DBLP]


  37. Computing Graph Roots Without Short Cycles. [Citation Graph (, )][DBLP]


  38. Characterisations and Linear-Time Recognition of Probe Cographs. [Citation Graph (, )][DBLP]


  39. Hardness Results and Efficient Algorithms for Graph Powers. [Citation Graph (, )][DBLP]


  40. Simplicial Powers of Graphs. [Citation Graph (, )][DBLP]


  41. Computing Graph Roots Without Short Cycles [Citation Graph (, )][DBLP]


  42. Preface. [Citation Graph (, )][DBLP]


  43. A forbidden induced subgraph characterization of distance-hereditary 5-leaf powers. [Citation Graph (, )][DBLP]


  44. The square of a block graph. [Citation Graph (, )][DBLP]


  45. Probe Split Graphs. [Citation Graph (, )][DBLP]


Search in 0.004secs, Finished in 0.006secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002