The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Thorsten Joachims: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Thorsten Joachims, Dayne Freitag, Tom M. Mitchell
    Web Watcher: A Tour Guide for the World Wide Web. [Citation Graph (3, 0)][DBLP]
    IJCAI (1), 1997, pp:770-777 [Conf]
  2. Phoebe Sengers, Rainer Liesendahi, Werner Magar, Christoph Seibert, Boris Müller, Thorsten Joachims, Weidong Geng, Pia Mårtensson, Kristina Höök
    The enigmatics of affect. [Citation Graph (0, 0)][DBLP]
    Symposium on Designing Interactive Systems, 2002, pp:87-98 [Conf]
  3. Filip Radlinski, Thorsten Joachims
    Minimally Invasive Randomization fro Collecting Unbiased Preferences from Clickthrough Logs. [Citation Graph (0, 0)][DBLP]
    AAAI, 2006, pp:- [Conf]
  4. Tobias Scheffer, Thorsten Joachims
    Estimating the Expected Error of Empirical Minimizers for Model Selection. [Citation Graph (0, 0)][DBLP]
    AAAI/IAAI, 1998, pp:1200- [Conf]
  5. Thorsten Joachims
    Text Categorization with Suport Vector Machines: Learning with Many Relevant Features. [Citation Graph (0, 0)][DBLP]
    ECML, 1998, pp:137-142 [Conf]
  6. Thomas Finley, Thorsten Joachims
    Supervised clustering with support vector machines. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:217-224 [Conf]
  7. Thorsten Joachims
    Estimating the Generalization Performance of an SVM Efficiently. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:431-438 [Conf]
  8. Thorsten Joachims
    Transductive Learning via Spectral Graph Partitioning. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:290-297 [Conf]
  9. Thorsten Joachims
    A support vector method for multivariate performance measures. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:377-384 [Conf]
  10. Thorsten Joachims
    A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. [Citation Graph (0, 0)][DBLP]
    ICML, 1997, pp:143-151 [Conf]
  11. Thorsten Joachims
    Transductive Inference for Text Classification using Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    ICML, 1999, pp:200-209 [Conf]
  12. Thorsten Joachims, Nello Cristianini, John Shawe-Taylor
    Composite Kernels for Hypertext Categorisation. [Citation Graph (0, 0)][DBLP]
    ICML, 2001, pp:250-257 [Conf]
  13. Thorsten Joachims, John E. Hopcroft
    Error bounds for correlation clustering. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:385-392 [Conf]
  14. Ralf Klinkenberg, Thorsten Joachims
    Detecting Concept Drift with Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:487-494 [Conf]
  15. Katharina Morik, Peter Brockhausen, Thorsten Joachims
    Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring. [Citation Graph (0, 0)][DBLP]
    ICML, 1999, pp:268-277 [Conf]
  16. Tobias Scheffer, Thorsten Joachims
    Expected Error Analysis for Model Selection. [Citation Graph (0, 0)][DBLP]
    ICML, 1999, pp:361-370 [Conf]
  17. Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, Yasemin Altun
    Support vector machine learning for interdependent and structured output spaces. [Citation Graph (0, 0)][DBLP]
    ICML, 2004, pp:- [Conf]
  18. Thorsten Joachims
    Optimizing search engines using clickthrough data. [Citation Graph (0, 0)][DBLP]
    KDD, 2002, pp:133-142 [Conf]
  19. Thorsten Joachims
    Training linear SVMs in linear time. [Citation Graph (0, 0)][DBLP]
    KDD, 2006, pp:217-226 [Conf]
  20. Filip Radlinski, Thorsten Joachims
    Query chains: learning to rank from implicit feedback. [Citation Graph (0, 0)][DBLP]
    KDD, 2005, pp:239-248 [Conf]
  21. Matthew Schultz, Thorsten Joachims
    Learning a Distance Metric from Relative Comparisons. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  22. Chun-Nam John Yu, Thorsten Joachims, Ron Elber, Jaroslaw Pillardy
    Support Vector Training of Protein Alignment Models. [Citation Graph (0, 0)][DBLP]
    RECOMB, 2007, pp:253-267 [Conf]
  23. Laura A. Granka, Thorsten Joachims, Geri Gay
    Eye-tracking analysis of user behavior in WWW search. [Citation Graph (0, 0)][DBLP]
    SIGIR, 2004, pp:478-479 [Conf]
  24. Thorsten Joachims
    A Statistical Learning Model of Text Classification for Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    SIGIR, 2001, pp:128-136 [Conf]
  25. Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, Geri Gay
    Accurately interpreting clickthrough data as implicit feedback. [Citation Graph (0, 0)][DBLP]
    SIGIR, 2005, pp:154-161 [Conf]
  26. Thorsten Joachims
    Structured Output Prediction with Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    SSPR/SPR, 2006, pp:1-7 [Conf]
  27. Katharina Morik, Michael Imhoff, Peter Brockhausen, Thorsten Joachims, Ursula Gather
    Erratum to "Knowledge discovery and knowledge validation in intensive care". [Citation Graph (0, 0)][DBLP]
    Artificial Intelligence in Medicine, 2000, v:20, n:2, pp:179- [Journal]
  28. Katharina Morik, Michael Imhoff, Peter Brockhausen, Thorsten Joachims, Ursula Gather
    Knowledge discovery and knowledge validation in intensive care. [Citation Graph (0, 0)][DBLP]
    Artificial Intelligence in Medicine, 2000, v:19, n:3, pp:225-249 [Journal]
  29. Paul Ginsparg, Paul Houle, Thorsten Joachims, Jae-Hoon Sul
    Mapping Subsets of Scholarly Information [Citation Graph (0, 0)][DBLP]
    CoRR, 2003, v:0, n:, pp:- [Journal]
  30. Lori Lorigo, Bing Pan, Helene Hembrooke, Thorsten Joachims, Laura A. Granka, Geri Gay
    The influence of task and gender on search and evaluation behavior using Google. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Manage., 2006, v:42, n:4, pp:1123-1131 [Journal]
  31. Thorsten Joachims, Fabrizio Sebastiani
    Guest Editors' Introduction to the Special Issue on Automated Text Categorization. [Citation Graph (0, 0)][DBLP]
    J. Intell. Inf. Syst., 2002, v:18, n:2-3, pp:103-105 [Journal]
  32. Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun
    Large Margin Methods for Structured and Interdependent Output Variables. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2005, v:6, n:, pp:1453-1484 [Journal]
  33. Thorsten Joachims
    The Maximum-Margin Approach to Learning Text Classifiers. [Citation Graph (0, 0)][DBLP]
    KI, 2001, v:15, n:3, pp:63-65 [Journal]
  34. Thorsten Joachims
    Support Vector Machines (Aktuelles Schlagwort). [Citation Graph (0, 0)][DBLP]
    KI, 1999, v:13, n:4, pp:54-55 [Journal]
  35. Thorsten Joachims, Edda Leopold
    Text-Mining - Serviceteil. [Citation Graph (0, 0)][DBLP]
    KI, 2002, v:16, n:2, pp:39- [Journal]
  36. Thorsten Joachims, Dunja Mladenic
    Browsing-Assistenten, Tour Guides und adaptive WWW-Server. [Citation Graph (0, 0)][DBLP]
    KI, 1998, v:12, n:3, pp:23-29 [Journal]
  37. Susan T. Dumais, Thorsten Joachims, Krishna Bharat, Andreas S. Weigend
    SIGIR 2003 workshop report: implicit measures of user interests and preferences. [Citation Graph (0, 0)][DBLP]
    SIGIR Forum, 2003, v:37, n:2, pp:50-54 [Journal]
  38. Rich Caruana, Thorsten Joachims, Lars Backstrom
    KDD-Cup 2004: results and analysis. [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2004, v:6, n:2, pp:95-108 [Journal]
  39. Stefan Pohl, Filip Radlinski, Thorsten Joachims
    Recommending related papers based on digital library access records. [Citation Graph (0, 0)][DBLP]
    JCDL, 2007, pp:417-418 [Conf]
  40. Filip Radlinski, Thorsten Joachims
    Active exploration for learning rankings from clickthrough data. [Citation Graph (0, 0)][DBLP]
    KDD, 2007, pp:570-579 [Conf]
  41. Benyah Shaparenko, Thorsten Joachims
    Information genealogy: uncovering the flow of ideas in non-hyperlinked document databases. [Citation Graph (0, 0)][DBLP]
    KDD, 2007, pp:619-628 [Conf]
  42. Yisong Yue, Thomas Finley, Filip Radlinski, Thorsten Joachims
    A support vector method for optimizing average precision. [Citation Graph (0, 0)][DBLP]
    SIGIR, 2007, pp:271-278 [Conf]
  43. Carmel Domshlak, Thorsten Joachims
    Unstructuring User Preferences: Efficient Non-Parametric Utility Revelation. [Citation Graph (0, 0)][DBLP]
    UAI, 2005, pp:169-177 [Conf]
  44. Stefan Pohl, Filip Radlinski, Thorsten Joachims
    Recommending Related Papers Based on Digital Library Access Records [Citation Graph (0, 0)][DBLP]
    CoRR, 2007, v:0, n:, pp:- [Journal]
  45. Filip Radlinski, Thorsten Joachims
    Query Chains: Learning to Rank from Implicit Feedback [Citation Graph (0, 0)][DBLP]
    CoRR, 2006, v:0, n:, pp:- [Journal]
  46. Filip Radlinski, Thorsten Joachims
    Evaluating the Robustness of Learning from Implicit Feedback [Citation Graph (0, 0)][DBLP]
    CoRR, 2006, v:0, n:, pp:- [Journal]
  47. Filip Radlinski, Thorsten Joachims
    Minimally Invasive Randomization for Collecting Unbiased Preferences from Clickthrough Logs [Citation Graph (0, 0)][DBLP]
    CoRR, 2006, v:0, n:, pp:- [Journal]
  48. Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, Filip Radlinski, Geri Gay
    Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search. [Citation Graph (0, 0)][DBLP]
    ACM Trans. Inf. Syst., 2007, v:25, n:2, pp:- [Journal]
  49. Carmel Domshlak, Thorsten Joachims
    Efficient and non-parametric reasoning over user preferences. [Citation Graph (0, 0)][DBLP]
    User Model. User-Adapt. Interact., 2007, v:17, n:1-2, pp:41-69 [Journal]

  50. How does clickthrough data reflect retrieval quality? [Citation Graph (, )][DBLP]


  51. Learning structural SVMs with latent variables. [Citation Graph (, )][DBLP]


  52. Training structural SVMs when exact inference is intractable. [Citation Graph (, )][DBLP]


  53. Learning diverse rankings with multi-armed bandits. [Citation Graph (, )][DBLP]


  54. Predicting diverse subsets using structural SVMs. [Citation Graph (, )][DBLP]


  55. Interactively optimizing information retrieval systems as a dueling bandits problem. [Citation Graph (, )][DBLP]


  56. Training structural svms with kernels using sampled cuts. [Citation Graph (, )][DBLP]


  57. Identifying the Original Contribution of a Document via Language Modeling. [Citation Graph (, )][DBLP]


  58. Sparse Kernel SVMs via Cutting-Plane Training. [Citation Graph (, )][DBLP]


  59. Fast Active Exploration for Link-Based Preference Learning Using Gaussian Processes. [Citation Graph (, )][DBLP]


  60. Identifying the original contribution of a document via language modeling. [Citation Graph (, )][DBLP]


  61. Learning more powerful test statistics for click-based retrieval evaluation. [Citation Graph (, )][DBLP]


  62. Predicting structured objects with support vector machines. [Citation Graph (, )][DBLP]


  63. Search Engines that Learn from Implicit Feedback. [Citation Graph (, )][DBLP]


Search in 0.021secs, Finished in 0.024secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002