The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Kurt M. Anstreicher: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Kurt M. Anstreicher, Marcia Fampa, Jon Lee, Joy Williams
    Continuous Relaxations for Constrained Maximum-Entropy Sampling. [Citation Graph (0, 0)][DBLP]
    IPCO, 1996, pp:234-248 [Conf]
  2. Kurt M. Anstreicher
    A Monotonic Projective Algorithm for Fractional Linear Programming. [Citation Graph (0, 0)][DBLP]
    Algorithmica, 1986, v:1, n:4, pp:483-498 [Journal]
  3. Kurt M. Anstreicher, Dick den Hertog, Cornelis Roos, Tamás Terlaky
    A Long-Step Barrier Method for Convex Quadratic Programming. [Citation Graph (0, 0)][DBLP]
    Algorithmica, 1993, v:10, n:5, pp:365-382 [Journal]
  4. Robert A. Bosch, Kurt M. Anstreicher
    On Partial Updating in a Potential Reduction Linear Programming Algorithm of Kojima, Mizuno, and Yoshise. [Citation Graph (0, 0)][DBLP]
    Algorithmica, 1993, v:9, n:2, pp:184-197 [Journal]
  5. Kurt M. Anstreicher, Marcia Fampa, Jon Lee, Joy Williams
    Maximum-entropy remote sampling. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2001, v:108, n:3, pp:211-226 [Journal]
  6. Kurt M. Anstreicher
    Improved Linear Programming Bounds for Antipodal Spherical Codes. [Citation Graph (0, 0)][DBLP]
    Discrete & Computational Geometry, 2002, v:28, n:1, pp:107-114 [Journal]
  7. Kurt M. Anstreicher
    The Thirteen Spheres: A New Proof. [Citation Graph (0, 0)][DBLP]
    Discrete & Computational Geometry, 2004, v:31, n:4, pp:613-625 [Journal]
  8. Kurt M. Anstreicher
    The Volumetric Barrier for Semidefinite Programming. [Citation Graph (0, 0)][DBLP]
    Math. Oper. Res., 2000, v:25, n:3, pp:365-380 [Journal]
  9. Kurt M. Anstreicher
    The volumetric barrier for convex quadratic constraints. [Citation Graph (0, 0)][DBLP]
    Math. Program., 2004, v:100, n:3, pp:613-662 [Journal]
  10. Kurt M. Anstreicher
    A Standard Form Variant, and Safeguarded Linesearch, for the Modified Karmarkar Algorithm. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1990, v:47, n:, pp:337-351 [Journal]
  11. Kurt M. Anstreicher
    A combined phase I-phase II scaled potential algorithm for linear programming. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1991, v:52, n:, pp:429-439 [Journal]
  12. Kurt M. Anstreicher
    Strict monotonicity and improved complexity in the standard form projective algorithm for linear programming. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1993, v:62, n:, pp:517-535 [Journal]
  13. Kurt M. Anstreicher
    Volumetric path following algorithms for linear programming. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1996, v:76, n:, pp:245-263 [Journal]
  14. Kurt M. Anstreicher, Robert A. Bosch
    Long steps in an O(n3L) algorithm for linear programming. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1992, v:54, n:, pp:251-265 [Journal]
  15. Kurt M. Anstreicher, Jon Lee, Thomas F. Rutherford
    Crashing a maximum-weight complementary basis. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1992, v:54, n:, pp:281-294 [Journal]
  16. Yinyu Ye, Kurt M. Anstreicher
    On quadratic and O(qudar root(n) * L) convergence of a predictor-corrector algorithm for LCP. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1993, v:62, n:, pp:537-551 [Journal]
  17. Kurt M. Anstreicher, Alfredo N. Iusem
    Continuous optimization: 5th Brazilian workshop. [Citation Graph (0, 0)][DBLP]
    Math. Program., 2008, v:111, n:1-2, pp:1-4 [Journal]

Search in 0.037secs, Finished in 0.038secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002