The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

S. Thomas McCormick: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
    A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem. [Citation Graph (0, 0)][DBLP]
    IPCO, 1999, pp:259-272 [Conf]
  2. S. Thomas McCormick, Thomas R. Ervolina
    Canceling most helpful total submodular cuts for submodular flow. [Citation Graph (0, 0)][DBLP]
    IPCO, 1993, pp:343-353 [Conf]
  3. Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
    A Faster Algorithm for Minimum Cost Submodular Flows. [Citation Graph (0, 0)][DBLP]
    SODA, 1998, pp:167-174 [Conf]
  4. Alexander V. Karzanov, S. Thomas McCormick
    Polynomial Methods for Separable Convex Optimization in Unimodular Spaces. [Citation Graph (0, 0)][DBLP]
    SODA, 1995, pp:78-87 [Conf]
  5. S. Thomas McCormick
    A Polynomial Algorithm for Abstract Maximum Flow. [Citation Graph (0, 0)][DBLP]
    SODA, 1996, pp:490-497 [Conf]
  6. S. Thomas McCormick, Akiyoshi Shioura
    Minimum ratio canceling is oracle polynomial for linear programming, but not strongly polynomial, even for networks. [Citation Graph (0, 0)][DBLP]
    SODA, 2000, pp:944-952 [Conf]
  7. S. Thomas McCormick, Scott R. Smallwood, Frits C. R. Spieksma
    Polynomial Algorithms for Multiprocessor Scheduling with a Small Number of Job Lengths. [Citation Graph (0, 0)][DBLP]
    SODA, 1997, pp:509-517 [Conf]
  8. S. Thomas McCormick
    Fast Algorithms for Parametric Scheduling Come from Extensions to Parametric Maximum Flow. [Citation Graph (0, 0)][DBLP]
    STOC, 1996, pp:319-328 [Conf]
  9. Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
    Fast Cycle Canceling Algorithms for Minimum Cost Submodular Flow*. [Citation Graph (0, 0)][DBLP]
    Combinatorica, 2003, v:23, n:3, pp:503-525 [Journal]
  10. Sohail S. Chaudhry, I. Douglas Moon, S. Thomas McCormick
    Conditional covering: Greedy heuristics and computational results. [Citation Graph (0, 0)][DBLP]
    Computers & OR, 1987, v:14, n:1, pp:11-18 [Journal]
  11. Thomas R. Ervolina, S. Thomas McCormick
    Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1993, v:46, n:2, pp:133-165 [Journal]
  12. S. Thomas McCormick, Thomas R. Ervolina
    Computing Maximum Mean Cuts. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1994, v:52, n:1, pp:53-70 [Journal]
  13. Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
    A fast cost scaling algorithm for submodular flow. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2000, v:74, n:3-4, pp:123-128 [Journal]
  14. S. Thomas McCormick, Scott R. Smallwood, Frits C. R. Spieksma
    A Polynomial Algorithm for Multiprocessor Scheduling with Two Job Lengths. [Citation Graph (0, 0)][DBLP]
    Math. Oper. Res., 2001, v:26, n:1, pp:31-49 [Journal]
  15. Maiko Shigeno, Satoru Iwata, S. Thomas McCormick
    Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow. [Citation Graph (0, 0)][DBLP]
    Math. Oper. Res., 2000, v:25, n:1, pp:76-104 [Journal]
  16. S. Frank Chang, S. Thomas McCormick
    A hierarchical algorithm for making sparse matrices sparser. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1992, v:56, n:, pp:1-30 [Journal]
  17. Bernard Fortz, Ali Ridha Mahjoub, S. Thomas McCormick, Pierre Pesneau
    Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut. [Citation Graph (0, 0)][DBLP]
    Math. Program., 2006, v:105, n:1, pp:85-111 [Journal]
  18. S. Thomas McCormick
    Making sparse matrices sparser: Computational results. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1991, v:49, n:, pp:91-111 [Journal]
  19. S. Thomas McCormick
    How to compute least infeasible flows. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1997, v:77, n:, pp:179-194 [Journal]
  20. Satoru Iwata, Tomomi Matsui, S. Thomas McCormick
    A fast bipartite network flow algorithm for selective assembly. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 1998, v:22, n:4-5, pp:137-143 [Journal]
  21. S. Thomas McCormick, Akiyoshi Shioura
    Minimum ratio canceling is oracle polynomial for linear programming, but not strongly polynomial, even for networks. [Citation Graph (0, 0)][DBLP]
    Oper. Res. Lett., 2000, v:27, n:5, pp:199-207 [Journal]
  22. Alexander V. Karzanov, S. Thomas McCormick
    Polynomial Methods for Separable Convex Optimization in Unimodular Linear Spaces with Applications. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 1997, v:26, n:4, pp:1245-1275 [Journal]
  23. Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
    A Strongly Polynomial Cut Canceling Algorithm for Minimum Cost Submodular Flow. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 2005, v:19, n:2, pp:304-320 [Journal]
  24. S. Thomas McCormick, S. Frank Chang
    The Weighted Sparsity Problem: Complexity and Algorithms. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 1993, v:6, n:1, pp:57-69 [Journal]

  25. A Polynomial Algorithm for Weighted Abstract Flow. [Citation Graph (, )][DBLP]


  26. Strongly polynomial and fully combinatorial algorithms for bisubmodular function minimization. [Citation Graph (, )][DBLP]


  27. The point-to-point delivery and connection problems: complexity and algorithms. [Citation Graph (, )][DBLP]


  28. The complexity of finding two disjoint paths with min-max objective function. [Citation Graph (, )][DBLP]


Search in 0.026secs, Finished in 0.028secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002