The SCEAS System
| |||||||

## Search the dblp DataBase
S. Thomas McCormick:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
**A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem.**[Citation Graph (0, 0)][DBLP] IPCO, 1999, pp:259-272 [Conf] - S. Thomas McCormick, Thomas R. Ervolina
**Canceling most helpful total submodular cuts for submodular flow.**[Citation Graph (0, 0)][DBLP] IPCO, 1993, pp:343-353 [Conf] - Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
**A Faster Algorithm for Minimum Cost Submodular Flows.**[Citation Graph (0, 0)][DBLP] SODA, 1998, pp:167-174 [Conf] - Alexander V. Karzanov, S. Thomas McCormick
**Polynomial Methods for Separable Convex Optimization in Unimodular Spaces.**[Citation Graph (0, 0)][DBLP] SODA, 1995, pp:78-87 [Conf] - S. Thomas McCormick
**A Polynomial Algorithm for Abstract Maximum Flow.**[Citation Graph (0, 0)][DBLP] SODA, 1996, pp:490-497 [Conf] - S. Thomas McCormick, Akiyoshi Shioura
**Minimum ratio canceling is oracle polynomial for linear programming, but not strongly polynomial, even for networks.**[Citation Graph (0, 0)][DBLP] SODA, 2000, pp:944-952 [Conf] - S. Thomas McCormick, Scott R. Smallwood, Frits C. R. Spieksma
**Polynomial Algorithms for Multiprocessor Scheduling with a Small Number of Job Lengths.**[Citation Graph (0, 0)][DBLP] SODA, 1997, pp:509-517 [Conf] - S. Thomas McCormick
**Fast Algorithms for Parametric Scheduling Come from Extensions to Parametric Maximum Flow.**[Citation Graph (0, 0)][DBLP] STOC, 1996, pp:319-328 [Conf] - Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
**Fast Cycle Canceling Algorithms for Minimum Cost Submodular Flow*.**[Citation Graph (0, 0)][DBLP] Combinatorica, 2003, v:23, n:3, pp:503-525 [Journal] - Sohail S. Chaudhry, I. Douglas Moon, S. Thomas McCormick
**Conditional covering: Greedy heuristics and computational results.**[Citation Graph (0, 0)][DBLP] Computers & OR, 1987, v:14, n:1, pp:11-18 [Journal] - Thomas R. Ervolina, S. Thomas McCormick
**Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow.**[Citation Graph (0, 0)][DBLP] Discrete Applied Mathematics, 1993, v:46, n:2, pp:133-165 [Journal] - S. Thomas McCormick, Thomas R. Ervolina
**Computing Maximum Mean Cuts.**[Citation Graph (0, 0)][DBLP] Discrete Applied Mathematics, 1994, v:52, n:1, pp:53-70 [Journal] - Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
**A fast cost scaling algorithm for submodular flow.**[Citation Graph (0, 0)][DBLP] Inf. Process. Lett., 2000, v:74, n:3-4, pp:123-128 [Journal] - S. Thomas McCormick, Scott R. Smallwood, Frits C. R. Spieksma
**A Polynomial Algorithm for Multiprocessor Scheduling with Two Job Lengths.**[Citation Graph (0, 0)][DBLP] Math. Oper. Res., 2001, v:26, n:1, pp:31-49 [Journal] - Maiko Shigeno, Satoru Iwata, S. Thomas McCormick
**Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow.**[Citation Graph (0, 0)][DBLP] Math. Oper. Res., 2000, v:25, n:1, pp:76-104 [Journal] - S. Frank Chang, S. Thomas McCormick
**A hierarchical algorithm for making sparse matrices sparser.**[Citation Graph (0, 0)][DBLP] Math. Program., 1992, v:56, n:, pp:1-30 [Journal] - Bernard Fortz, Ali Ridha Mahjoub, S. Thomas McCormick, Pierre Pesneau
**Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut.**[Citation Graph (0, 0)][DBLP] Math. Program., 2006, v:105, n:1, pp:85-111 [Journal] - S. Thomas McCormick
**Making sparse matrices sparser: Computational results.**[Citation Graph (0, 0)][DBLP] Math. Program., 1991, v:49, n:, pp:91-111 [Journal] - S. Thomas McCormick
**How to compute least infeasible flows.**[Citation Graph (0, 0)][DBLP] Math. Program., 1997, v:77, n:, pp:179-194 [Journal] - Satoru Iwata, Tomomi Matsui, S. Thomas McCormick
**A fast bipartite network flow algorithm for selective assembly.**[Citation Graph (0, 0)][DBLP] Oper. Res. Lett., 1998, v:22, n:4-5, pp:137-143 [Journal] - S. Thomas McCormick, Akiyoshi Shioura
**Minimum ratio canceling is oracle polynomial for linear programming, but not strongly polynomial, even for networks.**[Citation Graph (0, 0)][DBLP] Oper. Res. Lett., 2000, v:27, n:5, pp:199-207 [Journal] - Alexander V. Karzanov, S. Thomas McCormick
**Polynomial Methods for Separable Convex Optimization in Unimodular Linear Spaces with Applications.**[Citation Graph (0, 0)][DBLP] SIAM J. Comput., 1997, v:26, n:4, pp:1245-1275 [Journal] - Satoru Iwata, S. Thomas McCormick, Maiko Shigeno
**A Strongly Polynomial Cut Canceling Algorithm for Minimum Cost Submodular Flow.**[Citation Graph (0, 0)][DBLP] SIAM J. Discrete Math., 2005, v:19, n:2, pp:304-320 [Journal] - S. Thomas McCormick, S. Frank Chang
**The Weighted Sparsity Problem: Complexity and Algorithms.**[Citation Graph (0, 0)][DBLP] SIAM J. Discrete Math., 1993, v:6, n:1, pp:57-69 [Journal] **A Polynomial Algorithm for Weighted Abstract Flow.**[Citation Graph (, )][DBLP]**Strongly polynomial and fully combinatorial algorithms for bisubmodular function minimization.**[Citation Graph (, )][DBLP]**The point-to-point delivery and connection problems: complexity and algorithms.**[Citation Graph (, )][DBLP]**The complexity of finding two disjoint paths with min-max objective function.**[Citation Graph (, )][DBLP]
Search in 0.002secs, Finished in 0.004secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |