Search the dblp DataBase
S. Thomas McCormick :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Satoru Iwata , S. Thomas McCormick , Maiko Shigeno A Strongly Polynomial Cut Canceling Algorithm for the Submodular Flow Problem. [Citation Graph (0, 0)][DBLP ] IPCO, 1999, pp:259-272 [Conf ] S. Thomas McCormick , Thomas R. Ervolina Canceling most helpful total submodular cuts for submodular flow. [Citation Graph (0, 0)][DBLP ] IPCO, 1993, pp:343-353 [Conf ] Satoru Iwata , S. Thomas McCormick , Maiko Shigeno A Faster Algorithm for Minimum Cost Submodular Flows. [Citation Graph (0, 0)][DBLP ] SODA, 1998, pp:167-174 [Conf ] Alexander V. Karzanov , S. Thomas McCormick Polynomial Methods for Separable Convex Optimization in Unimodular Spaces. [Citation Graph (0, 0)][DBLP ] SODA, 1995, pp:78-87 [Conf ] S. Thomas McCormick A Polynomial Algorithm for Abstract Maximum Flow. [Citation Graph (0, 0)][DBLP ] SODA, 1996, pp:490-497 [Conf ] S. Thomas McCormick , Akiyoshi Shioura Minimum ratio canceling is oracle polynomial for linear programming, but not strongly polynomial, even for networks. [Citation Graph (0, 0)][DBLP ] SODA, 2000, pp:944-952 [Conf ] S. Thomas McCormick , Scott R. Smallwood , Frits C. R. Spieksma Polynomial Algorithms for Multiprocessor Scheduling with a Small Number of Job Lengths. [Citation Graph (0, 0)][DBLP ] SODA, 1997, pp:509-517 [Conf ] S. Thomas McCormick Fast Algorithms for Parametric Scheduling Come from Extensions to Parametric Maximum Flow. [Citation Graph (0, 0)][DBLP ] STOC, 1996, pp:319-328 [Conf ] Satoru Iwata , S. Thomas McCormick , Maiko Shigeno Fast Cycle Canceling Algorithms for Minimum Cost Submodular Flow*. [Citation Graph (0, 0)][DBLP ] Combinatorica, 2003, v:23, n:3, pp:503-525 [Journal ] Sohail S. Chaudhry , I. Douglas Moon , S. Thomas McCormick Conditional covering: Greedy heuristics and computational results. [Citation Graph (0, 0)][DBLP ] Computers & OR, 1987, v:14, n:1, pp:11-18 [Journal ] Thomas R. Ervolina , S. Thomas McCormick Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow. [Citation Graph (0, 0)][DBLP ] Discrete Applied Mathematics, 1993, v:46, n:2, pp:133-165 [Journal ] S. Thomas McCormick , Thomas R. Ervolina Computing Maximum Mean Cuts. [Citation Graph (0, 0)][DBLP ] Discrete Applied Mathematics, 1994, v:52, n:1, pp:53-70 [Journal ] Satoru Iwata , S. Thomas McCormick , Maiko Shigeno A fast cost scaling algorithm for submodular flow. [Citation Graph (0, 0)][DBLP ] Inf. Process. Lett., 2000, v:74, n:3-4, pp:123-128 [Journal ] S. Thomas McCormick , Scott R. Smallwood , Frits C. R. Spieksma A Polynomial Algorithm for Multiprocessor Scheduling with Two Job Lengths. [Citation Graph (0, 0)][DBLP ] Math. Oper. Res., 2001, v:26, n:1, pp:31-49 [Journal ] Maiko Shigeno , Satoru Iwata , S. Thomas McCormick Relaxed Most Negative Cycle and Most Positive Cut Canceling Algorithms for Minimum Cost Flow. [Citation Graph (0, 0)][DBLP ] Math. Oper. Res., 2000, v:25, n:1, pp:76-104 [Journal ] S. Frank Chang , S. Thomas McCormick A hierarchical algorithm for making sparse matrices sparser. [Citation Graph (0, 0)][DBLP ] Math. Program., 1992, v:56, n:, pp:1-30 [Journal ] Bernard Fortz , Ali Ridha Mahjoub , S. Thomas McCormick , Pierre Pesneau Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut. [Citation Graph (0, 0)][DBLP ] Math. Program., 2006, v:105, n:1, pp:85-111 [Journal ] S. Thomas McCormick Making sparse matrices sparser: Computational results. [Citation Graph (0, 0)][DBLP ] Math. Program., 1991, v:49, n:, pp:91-111 [Journal ] S. Thomas McCormick How to compute least infeasible flows. [Citation Graph (0, 0)][DBLP ] Math. Program., 1997, v:77, n:, pp:179-194 [Journal ] Satoru Iwata , Tomomi Matsui , S. Thomas McCormick A fast bipartite network flow algorithm for selective assembly. [Citation Graph (0, 0)][DBLP ] Oper. Res. Lett., 1998, v:22, n:4-5, pp:137-143 [Journal ] S. Thomas McCormick , Akiyoshi Shioura Minimum ratio canceling is oracle polynomial for linear programming, but not strongly polynomial, even for networks. [Citation Graph (0, 0)][DBLP ] Oper. Res. Lett., 2000, v:27, n:5, pp:199-207 [Journal ] Alexander V. Karzanov , S. Thomas McCormick Polynomial Methods for Separable Convex Optimization in Unimodular Linear Spaces with Applications. [Citation Graph (0, 0)][DBLP ] SIAM J. Comput., 1997, v:26, n:4, pp:1245-1275 [Journal ] Satoru Iwata , S. Thomas McCormick , Maiko Shigeno A Strongly Polynomial Cut Canceling Algorithm for Minimum Cost Submodular Flow. [Citation Graph (0, 0)][DBLP ] SIAM J. Discrete Math., 2005, v:19, n:2, pp:304-320 [Journal ] S. Thomas McCormick , S. Frank Chang The Weighted Sparsity Problem: Complexity and Algorithms. [Citation Graph (0, 0)][DBLP ] SIAM J. Discrete Math., 1993, v:6, n:1, pp:57-69 [Journal ] A Polynomial Algorithm for Weighted Abstract Flow. [Citation Graph (, )][DBLP ] Strongly polynomial and fully combinatorial algorithms for bisubmodular function minimization. [Citation Graph (, )][DBLP ] The point-to-point delivery and connection problems: complexity and algorithms. [Citation Graph (, )][DBLP ] The complexity of finding two disjoint paths with min-max objective function. [Citation Graph (, )][DBLP ] Search in 0.026secs, Finished in 0.028secs