The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Peter H. Bauer: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Peter H. Bauer
    The dynamic behavior of multi-dimensional recursive difference equations in floating point arithmetic. [Citation Graph (0, 0)][DBLP]
    ISCAS, 1993, pp:567-570 [Conf]
  2. Peter H. Bauer
    Absolute responcse error bounds for floating point digital filters in state space representation. [Citation Graph (0, 0)][DBLP]
    ISCAS, 1993, pp:619-626 [Conf]
  3. Peter H. Bauer
    Low-Dimensional Conditions for Global Asymptotic Stability of M-D Nonlinear Digital Filters. [Citation Graph (0, 0)][DBLP]
    ISCAS, 1994, pp:553-556 [Conf]
  4. Peter H. Bauer, Cédric Lorand, Kamal Premaratne
    Stability robustness of interconnected discrete time systems with synchronization errors. [Citation Graph (0, 0)][DBLP]
    ISCAS (4), 2003, pp:568-571 [Conf]
  5. Kamal Premaratne, Peter H. Bauer
    Limit Cycles and Asymptotic Stability of Delta-Operator Formulated Discrete-Time Systems in Fixed-Point Arithmetic. [Citation Graph (0, 0)][DBLP]
    ISCAS, 1994, pp:461-464 [Conf]
  6. Kamal Premaratne, Duminda A. Dewasurendra, Peter H. Bauer
    Evidence updating in a heterogeneous sensor environment. [Citation Graph (0, 0)][DBLP]
    ISCAS (4), 2003, pp:824-827 [Conf]
  7. Kamal Premaratne, E. C. Kulasekere, Peter H. Bauer, L. J. Leclerc
    An Exhaustive Search Algorithm for Checking Limit Cycle Behavior of Digital Filters. [Citation Graph (0, 0)][DBLP]
    ISCAS, 1995, pp:2035-2038 [Conf]
  8. S. A. Yost, Peter H. Bauer
    Asymptotic Stability of Linear Shift-Variant Difference Equations with Diamond-Shaped Uncertainties. [Citation Graph (0, 0)][DBLP]
    ISCAS, 1995, pp:785-788 [Conf]
  9. S. A. Yost, Peter H. Bauer, Kasyapa Balemarthy
    On the Double Biliniear Transformation and Nonessential Singularities of the Second Kind at Infinity. [Citation Graph (0, 0)][DBLP]
    ISCAS, 1994, pp:137-140 [Conf]
  10. Peter H. Bauer, Mihail L. Sichitiu, Kamal Premaratne
    Stability of 2-D distributed processes with time-variant communication delays. [Citation Graph (0, 0)][DBLP]
    ISCAS (2), 2001, pp:497-500 [Conf]
  11. J. Zhang, E. C. Kulasekere, Kamal Premaratne, Peter H. Bauer
    Resource management of task oriented distributed sensor networks. [Citation Graph (0, 0)][DBLP]
    ISCAS (3), 2001, pp:513-516 [Conf]
  12. A. Thiemann, Kamal Premaratne, Peter H. Bauer
    Regions of global asymptotic stability in coefficient-space for linear time-variant discrete-time systems. [Citation Graph (0, 0)][DBLP]
    ISCAS (3), 1999, pp:403-406 [Conf]
  13. Peter H. Bauer, Mihail L. Sichitiu, Kamal Premaratne
    Controlling an integrator through data networks: stability in the presence of unknown time-variant delays. [Citation Graph (0, 0)][DBLP]
    ISCAS (5), 1999, pp:491-494 [Conf]
  14. J. Zhang, Kamal Premaratne, Peter H. Bauer
    Local resource management of distributed sensor networks via static output feedback control. [Citation Graph (0, 0)][DBLP]
    ISCAS (3), 2002, pp:25-28 [Conf]
  15. E. C. Kulasekere, Kamal Premaratne, Duminda A. Dewasurendra, M.-L. Shyu, Peter H. Bauer
    Conditioning and updating evidence. [Citation Graph (0, 0)][DBLP]
    Int. J. Approx. Reasoning, 2004, v:36, n:1, pp:75-108 [Journal]
  16. Peter H. Bauer, Mihail L. Sichitiu, Kamal Premaratne
    Queue Control Under Time-Variant Delays: A Discrete Time System Approach. [Citation Graph (0, 0)][DBLP]
    Journal of Circuits, Systems, and Computers, 2002, v:11, n:2, pp:187-0 [Journal]
  17. Mihail L. Sichitiu, Peter H. Bauer, Kamal Premaratne
    The effect of uncertain time-variant delays in ATM networks with explicit rate feedback: a control theoretic approach. [Citation Graph (0, 0)][DBLP]
    IEEE/ACM Trans. Netw., 2003, v:11, n:4, pp:628-637 [Journal]
  18. Duminda A. Dewasurendra, Peter H. Bauer, Kamal Premaratne
    Distributed evidence filtering: the recursive case. [Citation Graph (0, 0)][DBLP]
    ISCAS, 2006, pp:- [Conf]

  19. Fundamental properties of non-negative impulse response filters - Theoretical bounds II. [Citation Graph (, )][DBLP]


  20. Fundamental properties of non-negative impulse response filters - Theoretical bounds I. [Citation Graph (, )][DBLP]


Search in 0.002secs, Finished in 0.003secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002