Search the dblp DataBase
Michèle Sebag :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Marc Schoenauer , Michèle Sebag Incremental Learning of Rules and Meta-rules. [Citation Graph (1, 0)][DBLP ] ML, 1990, pp:49-57 [Conf ] Mathieu Peyral , Antoine Ducoulombier , Caroline Ravise , Marc Schoenauer , Michèle Sebag Mimetic Evolution. [Citation Graph (0, 0)][DBLP ] Artificial Evolution, 1997, pp:81-94 [Conf ] Alain Ratle , Michèle Sebag Avoiding the Bloat with Stochastic Grammar-Based Genetic Programming. [Citation Graph (0, 0)][DBLP ] Artificial Evolution, 2001, pp:255-266 [Conf ] Caroline Ravise , Michèle Sebag , Marc Schoenauer Induction-Based Control of Genetic Algorithms. [Citation Graph (0, 0)][DBLP ] Artificial Evolution, 1995, pp:100-119 [Conf ] Michèle Sebag , Jérôme Azé , Noël Lucas ROC-Based Evolutionary Learning: Application to Medical Data Mining. [Citation Graph (0, 0)][DBLP ] Artificial Evolution, 2003, pp:384-396 [Conf ] Marco Botta , Attilio Giordana , Lorenza Saitta , Michèle Sebag Relational Learning: Hard Problems and Phase Transitions. [Citation Graph (0, 0)][DBLP ] AI*IA, 1999, pp:178-189 [Conf ] Nicolas Baskiotis , Michèle Sebag , Olivier Teytaud Systèmes inductifs-déductifs: une approche statistique. [Citation Graph (0, 0)][DBLP ] CAP, 2005, pp:145-146 [Conf ] Sylvain Gelly , Nicolas Bredeche , Michèle Sebag HMM hiérarchiques et factorisés: mécanisme d'inférence et apprentissage à partir de peu de données. [Citation Graph (0, 0)][DBLP ] CAP, 2005, pp:143-144 [Conf ] Nicolas Pernot , Antoine Cornuéjols , Michèle Sebag Phase transitions in grammatical inference. [Citation Graph (0, 0)][DBLP ] CAP, 2005, pp:49-60 [Conf ] Nicolas Tarrisson , Michèle Sebag , Olivier Teytaud , Julien Lefevre , Sylvain Baillet Multi-objective Multi-modal Optimization for Mining Spatio-temporal Patterns. [Citation Graph (0, 0)][DBLP ] CAP, 2005, pp:217-230 [Conf ] Michèle Sebag , Marc Schoenauer Learning to Control Inconsistent Knowledge. [Citation Graph (0, 0)][DBLP ] ECAI, 1992, pp:479-483 [Conf ] Antoine Ducoulombier , Michèle Sebag Continuous Mimetic Evolution. [Citation Graph (0, 0)][DBLP ] ECML, 1998, pp:334-345 [Conf ] Michèle Sebag Using Constraints to Building Version Spaces. [Citation Graph (0, 0)][DBLP ] ECML, 1994, pp:257-271 [Conf ] Michèle Sebag , Marc Schoenauer , Caroline Ravise An Induction-based Control for Genetic Algorithms (Extended Abstract). [Citation Graph (0, 0)][DBLP ] ECML, 1995, pp:351-355 [Conf ] Michèle Sebag , Caroline Ravise , Marc Schoenauer Controlling Evolution by Means of Machine Learning. [Citation Graph (0, 0)][DBLP ] Evolutionary Programming, 1996, pp:57-66 [Conf ] Michèle Sebag , Marc Schoenauer , Caroline Ravise Inductive Learning of Mutation Step-Size in Evolutionary Parameter Optimization. [Citation Graph (0, 0)][DBLP ] Evolutionary Programming, 1997, pp:247-261 [Conf ] Michèle Sebag From first order logic to Nd: a data driven reformulation. [Citation Graph (0, 0)][DBLP ] ESANN, 1999, pp:231-236 [Conf ] Michèle Sebag , Marc Schoenauer Using Examples to Refine a Redundant Knowledge Base. [Citation Graph (0, 0)][DBLP ] EUROVAV, 1991, pp:227-236 [Conf ] Nicolas Godzik , Marc Schoenauer , Michèle Sebag Evolving Symbolic Controllers. [Citation Graph (0, 0)][DBLP ] EvoWorkshops, 2003, pp:638-650 [Conf ] Elena Marchiori , Michèle Sebag Bayesian Learning with Local Support Vector Machines for Cancer Classification with Gene Expression Data. [Citation Graph (0, 0)][DBLP ] EvoWorkshops, 2005, pp:74-83 [Conf ] Michèle Sebag , Marc Schoenauer A Rule-Based Similarity Measure. [Citation Graph (0, 0)][DBLP ] EWCBR, 1993, pp:119-131 [Conf ] Jérôme Azé , Noël Lucas , Michèle Sebag Fouille de données visuelle et analyse de facteurs de risque médical. [Citation Graph (0, 0)][DBLP ] EGC, 2003, pp:183-188 [Conf ] Sébastien Jouteau , Antoine Cornuéjols , Michèle Sebag , Philippe Tarroux , Jean-Sylvain Liénard Nouveaux résultats en classification à l'aide d'un codage par motifs fréquents. [Citation Graph (0, 0)][DBLP ] EGC, 2003, pp:521-532 [Conf ] Michèle Sebag , Jérôme Azé , Noël Lucas Impact Studies and Sensitivity Analysis in Medical Data Mining with ROC-based Genetic Learning. [Citation Graph (0, 0)][DBLP ] ICDM, 2003, pp:637-640 [Conf ] Alexandre Termier , Marie-Christine Rousset , Michèle Sebag TreeFinder: a First Step towards XML Data Mining. [Citation Graph (0, 0)][DBLP ] ICDM, 2002, pp:450-457 [Conf ] Alexandre Termier , Marie-Christine Rousset , Michèle Sebag DRYADE: A New Approach for Discovering Closed Frequent Trees in Heterogeneous Tree Databases. [Citation Graph (0, 0)][DBLP ] ICDM, 2004, pp:543-546 [Conf ] Alexandre Termier , Marie-Christine Rousset , Michèle Sebag , Kouzou Ohara , Takashi Washio , Hiroshi Motoda Efficient Mining of High Branching Factor Attribute Trees. [Citation Graph (0, 0)][DBLP ] ICDM, 2005, pp:785-788 [Conf ] Michèle Sebag , Marc Schoenauer , Caroline Ravise Toward Civilized Evolution: Developing Inhibitions. [Citation Graph (0, 0)][DBLP ] ICGA, 1997, pp:291-298 [Conf ] Jacques Ales Bianchetti , Céline Rouveirol , Michèle Sebag Constraint-based Learning of Long Relational Concepts. [Citation Graph (0, 0)][DBLP ] ICML, 2002, pp:35-42 [Conf ] Nicolas Baskiotis , Michèle Sebag C4.5 competence map: a phase transition-inspired approach. [Citation Graph (0, 0)][DBLP ] ICML, 2004, pp:- [Conf ] Attilio Giordana , Lorenza Saitta , Michèle Sebag , Marco Botta Analyzing Relational Learning in the Phase Transition Framework. [Citation Graph (0, 0)][DBLP ] ICML, 2000, pp:311-318 [Conf ] Caroline Ravise , Michèle Sebag An Advanced Evolution Should Not Repeat its Past Errors. [Citation Graph (0, 0)][DBLP ] ICML, 1996, pp:400-408 [Conf ] Michèle Sebag A Constraint-based Induction Algorithm in FOL. [Citation Graph (0, 0)][DBLP ] ICML, 1994, pp:275-283 [Conf ] Michèle Sebag Delaying the Choice of Bias: A Disjunctive Version Space Approach. [Citation Graph (0, 0)][DBLP ] ICML, 1996, pp:444-452 [Conf ] Nicolas Pernot , Antoine Cornuéjols , Michèle Sebag Phase Transitions within Grammatical Inference. [Citation Graph (0, 0)][DBLP ] IJCAI, 2005, pp:811-816 [Conf ] Michèle Sebag Constructive Induction: A Version Space-based Approach. [Citation Graph (0, 0)][DBLP ] IJCAI, 1999, pp:708-713 [Conf ] Michèle Sebag , Céline Rouveirol Tractable Induction and Classification in First Order Logic Via Stochastic Matching. [Citation Graph (0, 0)][DBLP ] IJCAI (2), 1997, pp:888-893 [Conf ] Michèle Sebag , Nicolas Tarrisson , Olivier Teytaud , Julien Lefevre , Sylvain Baillet A Multi-Objective Multi-Modal Optimization Approach for Mining Stable Spatio-Temporal Patterns. [Citation Graph (0, 0)][DBLP ] IJCAI, 2005, pp:859-864 [Conf ] Alexandre Termier , Michèle Sebag , Marie-Christine Rousset Combining Statistics and Semantics for Word and Document Clustering. [Citation Graph (0, 0)][DBLP ] Workshop on Ontology Learning, 2001, pp:- [Conf ] Nicolas Baskiotis , Michèle Sebag , Marie-Claude Gaudel , Sandrine-Dominique Gouraud A Machine Learning Approach for Statistical Software Testing. [Citation Graph (0, 0)][DBLP ] IJCAI, 2007, pp:2274-2279 [Conf ] Jérôme Azé , Mathieu Roche , Yves Kodratoff , Michèle Sebag Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction [Citation Graph (0, 0)][DBLP ] International Conference on Computational Intelligence, 2004, pp:478-481 [Conf ] Jérôme Maloberti , Michèle Sebag Theta-Subsumption in a Constraint Satisfaction Perspective. [Citation Graph (0, 0)][DBLP ] ILP, 2001, pp:164-178 [Conf ] Michèle Sebag A Stochastic Simple Similarity. [Citation Graph (0, 0)][DBLP ] ILP, 1998, pp:95-105 [Conf ] Michèle Sebag , Céline Rouveirol Polynomial-Time Learning in Logic Programming and Constraint Logic Programming. [Citation Graph (0, 0)][DBLP ] Inductive Logic Programming Workshop, 1996, pp:105-126 [Conf ] Michèle Sebag Distance Induction in First Order Logic. [Citation Graph (0, 0)][DBLP ] ILP, 1997, pp:264-272 [Conf ] Alain Ratle , Michèle Sebag A Novel Approach to Machine Discovery: Genetic Programming and Stochastic Grammars. [Citation Graph (0, 0)][DBLP ] ILP, 2002, pp:207-222 [Conf ] Attilio Giordana , Lorenza Saitta , Michèle Sebag , Marco Botta Can Relational Learning Scale Up? [Citation Graph (0, 0)][DBLP ] ISMIS, 2000, pp:31-39 [Conf ] Kees Jong , Jérémie Mary , Antoine Cornuéjols , Elena Marchiori , Michèle Sebag Ensemble Feature Ranking. [Citation Graph (0, 0)][DBLP ] PKDD, 2004, pp:267-278 [Conf ] Christian Gagné , Marc Schoenauer , Michèle Sebag , Marco Tomassini Genetic Programming for Kernel-Based Learning with Co-evolving Subsets Selection. [Citation Graph (0, 0)][DBLP ] PPSN, 2006, pp:1008-1017 [Conf ] Nicolas Godzik , Marc Schoenauer , Michèle Sebag Robotics and Multi-agent Systems Robustness in the Long Run: Auto-teaching vs Anticipation in Evolutionary Robotics. [Citation Graph (0, 0)][DBLP ] PPSN, 2004, pp:932-941 [Conf ] Vojtech Krmicek , Michèle Sebag Functional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization. [Citation Graph (0, 0)][DBLP ] PPSN, 2006, pp:382-391 [Conf ] Kees Jong , Elena Marchiori , Michèle Sebag Ensemble Learning with Evolutionary Computation: Application to Feature Ranking. [Citation Graph (0, 0)][DBLP ] PPSN, 2004, pp:1133-1142 [Conf ] Alain Ratle , Michèle Sebag Genetic Programming and Domain Knowledge: Beyond the Limitations of Grammar-Guided Machine Discovery. [Citation Graph (0, 0)][DBLP ] PPSN, 2000, pp:211-220 [Conf ] Michèle Sebag , Antoine Ducoulombier Extending Population-Based Incremental Learning to Continuous Search Spaces. [Citation Graph (0, 0)][DBLP ] PPSN, 1998, pp:418-427 [Conf ] Michèle Sebag , Marc Schoenauer Controlling Crossover through Inductive Learning. [Citation Graph (0, 0)][DBLP ] PPSN, 1994, pp:209-218 [Conf ] Michèle Sebag , Marc Schoenauer Mutation by Imitation in Boolean Evolution Strategies. [Citation Graph (0, 0)][DBLP ] PPSN, 1996, pp:356-365 [Conf ] Michèle Sebag , Céline Rouveirol , Jean-Francois Puget Induction of Constraint Logic Programs. [Citation Graph (0, 0)][DBLP ] PRICAI Workshops, 1996, pp:148-167 [Conf ] Mathieu Roche , Jérôme Azé , Yves Kodratoff , Michèle Sebag Learning Interestingness Measures in Terminology Extraction. A ROC-based approach. [Citation Graph (0, 0)][DBLP ] ROCAI, 2004, pp:81-88 [Conf ] Sylvain Gelly , Nicolas Bredeche , Michèle Sebag From Factorial and Hierarchical HMM to Bayesian Network: A Representation Change Algorithm. [Citation Graph (0, 0)][DBLP ] SARA, 2005, pp:107-120 [Conf ] Alejandro Rosete-Suárez , Alberto Nogueira-Keeling , Alberto Ochoa-Rodríguez , Michèle Sebag Hacia un Enfoque General del Trazado de Grafos. [Citation Graph (0, 0)][DBLP ] Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, 1999, v:8, n:, pp:18-26 [Journal ] Hatem Hamda , François Jouve , Evelyne Lutton , Marc Schoenauer , Michèle Sebag Compact Unstructured Representations for Evolutionary Design. [Citation Graph (0, 0)][DBLP ] Appl. Intell., 2002, v:16, n:2, pp:139-155 [Journal ] Alain Ratle , Michèle Sebag Grammar-guided genetic programming and dimensional consistency: application to non-parametric identification in mechanics. [Citation Graph (0, 0)][DBLP ] Appl. Soft Comput., 2001, v:1, n:1, pp:105-118 [Journal ] Michèle Sebag , Marc Schoenauer , Mathieu Peyral Revisiting the Memory of Evolution. [Citation Graph (0, 0)][DBLP ] Fundam. Inform., 1998, v:35, n:1-4, pp:125-162 [Journal ] Olivier Gascuel , Bernadette Bouchon-Meunier , Gilles Caraux , Patrick Gallinari , Alain Guénoche , Yann Guermeur , Yves Lechevallier , Christophe Marsala , Laurent Miclet , Jacques Nicolas , Richard Nock , Mohammed Ramdani , Michèle Sebag , Basavanneppa Tallur , Gilles Venturini , Patrick Vitte Twelve Numerical, Symbolic and Hybrid Supervised Classification Methods. [Citation Graph (0, 0)][DBLP ] IJPRAI, 1998, v:12, n:4, pp:517-571 [Journal ] Marco Botta , Attilio Giordana , Lorenza Saitta , Michèle Sebag Relational Learning as Search in a Critical Region. [Citation Graph (0, 0)][DBLP ] Journal of Machine Learning Research, 2003, v:4, n:, pp:431-463 [Journal ] Jérôme Maloberti , Michèle Sebag Fast Theta-Subsumption with Constraint Satisfaction Algorithms. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2004, v:55, n:2, pp:137-174 [Journal ] Michèle Sebag , Céline Rouveirol Any-time Relational Reasoning: Resource-bounded Induction and Deduction Through Stochastic Matching. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2000, v:38, n:1-2, pp:41-62 [Journal ] Hendrik Blockeel , Michèle Sebag Scalability and efficiency in multi-relational data mining. [Citation Graph (0, 0)][DBLP ] SIGKDD Explorations, 2003, v:5, n:1, pp:17-30 [Journal ] Christian Gagné , Michèle Sebag , Marc Schoenauer , Marco Tomassini Ensemble learning for free with evolutionary algorithms? [Citation Graph (0, 0)][DBLP ] GECCO, 2007, pp:1782-1789 [Conf ] Christian Gagné , Michèle Sebag , Marc Schoenauer , Marco Tomassini Ensemble Learning for Free with Evolutionary Algorithms ? [Citation Graph (0, 0)][DBLP ] CoRR, 2007, v:0, n:, pp:- [Journal ] Nicolas Godzik , Marc Schoenauer , Michèle Sebag Evolving Symbolic Controllers [Citation Graph (0, 0)][DBLP ] CoRR, 2007, v:0, n:, pp:- [Journal ] Christian Gagné , Marc Schoenauer , Michèle Sebag , Marco Tomassini Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection [Citation Graph (0, 0)][DBLP ] CoRR, 2006, v:0, n:, pp:- [Journal ] Vojtech Krmicek , Michèle Sebag Functional Brain Imaging with Multi-Objective Multi-Modal Evolutionary Optimization [Citation Graph (0, 0)][DBLP ] CoRR, 2006, v:0, n:, pp:- [Journal ] Marc Schoenauer , Michèle Sebag Using Domain Knowledge in Evolutionary System Identification [Citation Graph (0, 0)][DBLP ] CoRR, 2006, v:0, n:, pp:- [Journal ] Alain Ratle , Michèle Sebag Avoiding the Bloat with Stochastic Grammar-based Genetic Programming [Citation Graph (0, 0)][DBLP ] CoRR, 2006, v:0, n:, pp:- [Journal ] Discovering Piecewise Linear Models of Grid Workload. [Citation Graph (, )][DBLP ] Multi-scale Real-Time Grid Monitoring with Job Stream Mining. [Citation Graph (, )][DBLP ] Structural Sampling for Statistical Software Testing. [Citation Graph (, )][DBLP ] Unsupervised Layer-Wise Model Selection in Deep Neural Networks. [Citation Graph (, )][DBLP ] Adaptive operator selection with dynamic multi-armed bandits. [Citation Graph (, )][DBLP ] Optimal robust expensive optimization is tractable. [Citation Graph (, )][DBLP ] Analysis of adaptive operator selection techniques on the royal road and long k-path problems. [Citation Graph (, )][DBLP ] Extreme: dynamic multi-armed bandits for adaptive operator selection. [Citation Graph (, )][DBLP ] Toward comparison-based adaptive operator selection. [Citation Graph (, )][DBLP ] A mono surrogate for multiobjective optimization. [Citation Graph (, )][DBLP ] A pareto-compliant surrogate approach for multiobjective optimization. [Citation Graph (, )][DBLP ] Fitness-AUC bandit adaptive strategy selection vs. the probability matching one within differential evolution: an empirical comparison on the bbob-2010 noiseless testbed. [Citation Graph (, )][DBLP ] Toward Behavioral Modeling of a Grid System: Mining the Logging and Bookkeeping Files. [Citation Graph (, )][DBLP ] Feature Selection as a One-Player Game. [Citation Graph (, )][DBLP ] A Phase Transition-Based Perspective on Multiple Instance Kernels. [Citation Graph (, )][DBLP ] Structural Statistical Software Testing with Active Learning in a Graph. [Citation Graph (, )][DBLP ] Toward autonomic grids: analyzing the job flow with affinity streaming. [Citation Graph (, )][DBLP ] Data Streaming with Affinity Propagation. [Citation Graph (, )][DBLP ] Boosting Active Learning to Optimality: A Tractable Monte-Carlo, Billiard-Based Algorithm. [Citation Graph (, )][DBLP ] Extreme Value Based Adaptive Operator Selection. [Citation Graph (, )][DBLP ] Open-Ended Evolutionary Robotics: An Information Theoretic Approach. [Citation Graph (, )][DBLP ] Comparison-Based Adaptive Strategy Selection with Bandits in Differential Evolution. [Citation Graph (, )][DBLP ] Comparison-Based Optimizers Need Comparison-Based Surrogates. [Citation Graph (, )][DBLP ] Memory-enhanced Evolutionary Robotics: The Echo State Network Approach. [Citation Graph (, )][DBLP ] Extreme compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection. [Citation Graph (, )][DBLP ] Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive Operator Selection in Evolutionary Algorithms. [Citation Graph (, )][DBLP ] Distributed and Incremental Clustering Based on Weighted Affinity Propagation. [Citation Graph (, )][DBLP ] Artificial Agents and Speculative Bubbles [Citation Graph (, )][DBLP ] Preference Learning in Terminology Extraction: A ROC-based approach [Citation Graph (, )][DBLP ] Scaling Analysis of Affinity Propagation [Citation Graph (, )][DBLP ] Open-Ended Evolutionary Robotics: an Information Theoretic Approach [Citation Graph (, )][DBLP ] Search in 0.051secs, Finished in 0.058secs