The SCEAS System
| |||||||

## Search the dblp DataBase
G. H. John van Rees:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- Gerhard W. Dueck, G. H. John van Rees
**On the Maximum Number of Implicants Needed to Cover a Multiple-Valued Logic Function Using Window Literals.**[Citation Graph (0, 0)][DBLP] ISMVL, 1991, pp:280-286 [Conf] - John A. Bate, G. H. John van Rees
**The Size of the Smallest Strong Critical Set in a Latin Square.**[Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:53, n:, pp:- [Journal] - Rolf S. Rees, Douglas R. Stinson, Ruizhong Wei, G. H. John van Rees
**An application of covering designs: determining the maximum consistent set of shares in a threshold scheme.**[Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:53, n:, pp:- [Journal] - Douglas R. Stinson, G. H. John van Rees
**The equivalence of certain equidistant binary codes and symmetric BIBDs.**[Citation Graph (0, 0)][DBLP] Combinatorica, 1984, v:4, n:4, pp:357-362 [Journal] - R. T. Bilous, G. H. John van Rees
**An Enumeration of Binary Self-Dual Codes of Length 32.**[Citation Graph (0, 0)][DBLP] Des. Codes Cryptography, 2002, v:26, n:1-3, pp:61-86 [Journal] - Charles J. Colbourn, Douglas R. Stinson, G. H. John van Rees
**Preface: In Honour of Ronald C. Mullin.**[Citation Graph (0, 0)][DBLP] Des. Codes Cryptography, 2002, v:26, n:1-3, pp:5-6 [Journal] - Alan C. H. Ling, Pak Ching Li, G. H. John van Rees
**Splitting systems and separating systems.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:279, n:1-3, pp:355-368 [Journal] - D. Deng, Douglas R. Stinson, Pak Ching Li, G. H. John van Rees, Ruizhong Wei
**Constructions and bounds for (m, t)-splitting systems.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2007, v:307, n:1, pp:18-37 [Journal] - Marshall Hall Jr., Robert Roth, G. H. John van Rees, Scott A. Vanstone
**On designs (22, 33, 12, 8, 4).**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1988, v:47, n:2, pp:157-175 [Journal] - D. M. Jackson, G. H. John van Rees
**The Enumeration of Generalized Double Stochastic Nonnegative Integer Square Matrices.**[Citation Graph (0, 0)][DBLP] SIAM J. Comput., 1975, v:4, n:4, pp:474-477 [Journal] - Andries E. Brouwer, G. H. John van Rees
**More mutually orthogonal latin squares.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1982, v:39, n:3, pp:263-281 [Journal] - G. H. John van Rees
**A new family of BIBDs and non-embeddable (16, 24, 9, 6, 3)-designs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1989, v:77, n:1-3, pp:357-365 [Journal] - David A. Drake, G. H. John van Rees, W. D. Wallis
**Maximal sets of mutually orthogonal Latin squares.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1999, v:194, n:1-3, pp:87-94 [Journal] - William Kocay, G. H. John van Rees
**Some non-isomorphic (4t + 4, 8t + 6, 4t + 3, 2t + 2, 2t + 1)- BIBD's.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1991, v:92, n:1-3, pp:159-172 [Journal] **When is a partial Latin square uniquely completable, but not its completable product?**[Citation Graph (, )][DBLP]
Search in 0.003secs, Finished in 0.004secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |