The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

G. H. John van Rees: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Gerhard W. Dueck, G. H. John van Rees
    On the Maximum Number of Implicants Needed to Cover a Multiple-Valued Logic Function Using Window Literals. [Citation Graph (0, 0)][DBLP]
    ISMVL, 1991, pp:280-286 [Conf]
  2. John A. Bate, G. H. John van Rees
    The Size of the Smallest Strong Critical Set in a Latin Square. [Citation Graph (0, 0)][DBLP]
    Ars Comb., 1999, v:53, n:, pp:- [Journal]
  3. Rolf S. Rees, Douglas R. Stinson, Ruizhong Wei, G. H. John van Rees
    An application of covering designs: determining the maximum consistent set of shares in a threshold scheme. [Citation Graph (0, 0)][DBLP]
    Ars Comb., 1999, v:53, n:, pp:- [Journal]
  4. Douglas R. Stinson, G. H. John van Rees
    The equivalence of certain equidistant binary codes and symmetric BIBDs. [Citation Graph (0, 0)][DBLP]
    Combinatorica, 1984, v:4, n:4, pp:357-362 [Journal]
  5. R. T. Bilous, G. H. John van Rees
    An Enumeration of Binary Self-Dual Codes of Length 32. [Citation Graph (0, 0)][DBLP]
    Des. Codes Cryptography, 2002, v:26, n:1-3, pp:61-86 [Journal]
  6. Charles J. Colbourn, Douglas R. Stinson, G. H. John van Rees
    Preface: In Honour of Ronald C. Mullin. [Citation Graph (0, 0)][DBLP]
    Des. Codes Cryptography, 2002, v:26, n:1-3, pp:5-6 [Journal]
  7. Alan C. H. Ling, Pak Ching Li, G. H. John van Rees
    Splitting systems and separating systems. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2004, v:279, n:1-3, pp:355-368 [Journal]
  8. D. Deng, Douglas R. Stinson, Pak Ching Li, G. H. John van Rees, Ruizhong Wei
    Constructions and bounds for (m, t)-splitting systems. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2007, v:307, n:1, pp:18-37 [Journal]
  9. Marshall Hall Jr., Robert Roth, G. H. John van Rees, Scott A. Vanstone
    On designs (22, 33, 12, 8, 4). [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1988, v:47, n:2, pp:157-175 [Journal]
  10. D. M. Jackson, G. H. John van Rees
    The Enumeration of Generalized Double Stochastic Nonnegative Integer Square Matrices. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 1975, v:4, n:4, pp:474-477 [Journal]
  11. Andries E. Brouwer, G. H. John van Rees
    More mutually orthogonal latin squares. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1982, v:39, n:3, pp:263-281 [Journal]
  12. G. H. John van Rees
    A new family of BIBDs and non-embeddable (16, 24, 9, 6, 3)-designs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1989, v:77, n:1-3, pp:357-365 [Journal]
  13. David A. Drake, G. H. John van Rees, W. D. Wallis
    Maximal sets of mutually orthogonal Latin squares. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1999, v:194, n:1-3, pp:87-94 [Journal]
  14. William Kocay, G. H. John van Rees
    Some non-isomorphic (4t + 4, 8t + 6, 4t + 3, 2t + 2, 2t + 1)- BIBD's. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1991, v:92, n:1-3, pp:159-172 [Journal]

  15. When is a partial Latin square uniquely completable, but not its completable product? [Citation Graph (, )][DBLP]


Search in 0.003secs, Finished in 0.004secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002