
Search the dblp DataBase
Mikhail H. Klin:
[Publications]
[Author Rank by year]
[Coauthors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
 I. A. Faradzev, Mikhail H. Klin
For Computations with Coherent Configurations. [Citation Graph (0, 0)][DBLP] ISSAC, 1991, pp:219223 [Conf]
 Andries E. Brouwer, A. V. Ivanov, Mikhail H. Klin
Some new strongly regular graphs . [Citation Graph (0, 0)][DBLP] Combinatorica, 1989, v:9, n:4, pp:339344 [Journal]
 Leif K. Jørgensen, Mikhail H. Klin
Switching of Edges in Strongly Regular Graphs I: A Family of Partial Difference Sets on 100 Vertices. [Citation Graph (0, 0)][DBLP] Electr. J. Comb., 2003, v:10, n:, pp: [Journal]
 Mikhail E. Muzychuk, Mikhail H. Klin, Nikolai S. Zefirov
on the Mathematical Model of Triangulanes. [Citation Graph (0, 0)][DBLP] Discrete Applied Mathematics, 1996, v:67, n:13, pp:175187 [Journal]
 Andries E. Brouwer, Jack H. Koolen, Mikhail H. Klin
A Root Graph that is Locally the Line Graph of the Peterson Graph. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:264, n:13, pp:1324 [Journal]
 Frank Fiedler, Mikhail H. Klin, Mikhail E. Muzychuk
Small vertextransitive directed strongly regular graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2002, v:255, n:13, pp:87115 [Journal]
 N. L. Biggs, Mikhail H. Klin, P. Reinfeld
Algebraic methods for chromatic polynomials. [Citation Graph (0, 0)][DBLP] Eur. J. Comb., 2004, v:25, n:2, pp:147160 [Journal]
 Gareth A. Jones, Mikhail H. Klin, Yossi Moshe
Primitivity of Permutation Groups, Coherent Algebras and Matrices. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 2002, v:98, n:1, pp:210217 [Journal]
 Anton Betten, Mikhail H. Klin, Reinhard Laue, Alfred Wassermann
Graphical tdesigns via polynomial KramerMesner matrices. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1999, v:197, n:, pp:83109 [Journal]
 Mikhail E. Muzychuk, Mikhail H. Klin
On graphs with three eigenvalues. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1998, v:189, n:13, pp:191207 [Journal]
Association schemes on 28 points as mergings of a halfhomogeneous coherent configuration. [Citation Graph (, )][DBLP]
Search in 0.002secs, Finished in 0.003secs
