The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Peter A. Flach: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Peter A. Flach
    Second-order Inductive Learning. [Citation Graph (0, 0)][DBLP]
    AII, 1989, pp:202-216 [Conf]
  2. Peter A. Flach
    An Analysis of Various Forms of "Jumping to Conclusions". [Citation Graph (0, 0)][DBLP]
    AII, 1992, pp:170-186 [Conf]
  3. Peter A. Flach, Nada Lavrac
    Learning in Clausal Logic: A Perspective on Inductive Logic Programming. [Citation Graph (0, 0)][DBLP]
    Computational Logic: Logic Programming and Beyond, 2002, pp:437-471 [Conf]
  4. Thomas Gärtner, Peter A. Flach, Stefan Wrobel
    On Graph Kernels: Hardness Results and Efficient Alternatives. [Citation Graph (0, 0)][DBLP]
    COLT, 2003, pp:129-143 [Conf]
  5. Peter A. Flach
    From Extensional to Intensional Knowledge: Inductive Logic Programming Techniques and Their Application to Deductive Databases. [Citation Graph (0, 0)][DBLP]
    Transactions and Change in Logic Databases, 1998, pp:356-387 [Conf]
  6. Elias Gyftodimos, Peter A. Flach
    Combining Bayesian Networks with Higher-Order Data Representations. [Citation Graph (0, 0)][DBLP]
    Probabilistic, Logical and Relational Learning, 2005, pp:- [Conf]
  7. Yonghong Peng, Peter A. Flach, Carlos Soares, Pavel Brazdil
    Improved Dataset Characterisation for Meta-learning. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2002, pp:141-152 [Conf]
  8. Peter A. Flach
    Inductive Logic Databases: From Extensional to Intensional Knowledge. [Citation Graph (0, 0)][DBLP]
    DOOD, 1997, pp:3- [Conf]
  9. César Ferri, Peter A. Flach, José Hernández-Orallo
    Improving the AUC of Probabilistic Estimation Trees. [Citation Graph (0, 0)][DBLP]
    ECML, 2003, pp:121-132 [Conf]
  10. Peter A. Flach
    Predicate Invention in Inductive Data Engineering. [Citation Graph (0, 0)][DBLP]
    ECML, 1993, pp:83-94 [Conf]
  11. Johannes Fürnkranz, Peter A. Flach
    An Analysis of Stopping and Filtering Criteria for Rule Learning. [Citation Graph (0, 0)][DBLP]
    ECML, 2004, pp:123-133 [Conf]
  12. Shan-Hwei Nienhuys-Cheng, Peter A. Flach
    Consistent Term Mappings, Term Partitions and Inverse Resolution. [Citation Graph (0, 0)][DBLP]
    EWSL, 1991, pp:361-374 [Conf]
  13. Peter A. Flach
    Knowledge Representation for Inductive Learning. [Citation Graph (0, 0)][DBLP]
    ESCQARU, 1999, pp:160-167 [Conf]
  14. Peter A. Flach
    Multi-relational Data Mining: a perspective. [Citation Graph (0, 0)][DBLP]
    EPIA, 2001, pp:3-4 [Conf]
  15. Peter A. Flach
    Reinventing Machine Learning with ROC Analysis. [Citation Graph (0, 0)][DBLP]
    IBERAMIA-SBIA, 2006, pp:4-5 [Conf]
  16. Nada Lavrac, Peter A. Flach, Branko Kavsek, Ljupco Todorovski
    Adapting classification rule induction to subgroup discovery. [Citation Graph (0, 0)][DBLP]
    ICDM, 2002, pp:266-273 [Conf]
  17. Annalisa Appice, Michelangelo Ceci, Simon Rawles, Peter A. Flach
    Redundant feature elimination for multi-class problems. [Citation Graph (0, 0)][DBLP]
    ICML, 2004, pp:- [Conf]
  18. César Ferri, Peter A. Flach, José Hernández-Orallo
    Learning Decision Trees Using the Area Under the ROC Curve. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:139-146 [Conf]
  19. César Ferri, Peter A. Flach, José Hernández-Orallo
    Delegating classifiers. [Citation Graph (0, 0)][DBLP]
    ICML, 2004, pp:- [Conf]
  20. Peter A. Flach
    The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC Isometrics. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:194-201 [Conf]
  21. Johannes Fürnkranz, Peter A. Flach
    An Analysis of Rule Evaluation Metrics. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:202-209 [Conf]
  22. Thomas Gärtner, Peter A. Flach
    WBCsvm: Weighted Bayesian Classification based on Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    ICML, 2001, pp:154-161 [Conf]
  23. Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, Alex J. Smola
    Multi-Instance Kernels. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:179-186 [Conf]
  24. Nicolas Lachiche, Peter A. Flach
    Improving Accuracy and Cost of Two-class and Multi-class Probabilistic Classifiers Using ROC Curves. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:416-423 [Conf]
  25. Elias Gyftodimos, Peter A. Flach
    Combining Bayesian Networks with Higher-Order Data Representations. [Citation Graph (0, 0)][DBLP]
    IDA, 2005, pp:145-156 [Conf]
  26. Peter A. Flach, Shaomin Wu
    Repairing Concavities in ROC Curves. [Citation Graph (0, 0)][DBLP]
    IJCAI, 2005, pp:702-707 [Conf]
  27. Ronaldo C. Prati, Peter A. Flach
    ROCCER: An Algorithm for Rule Learning Based on ROC Analysis. [Citation Graph (0, 0)][DBLP]
    IJCAI, 2005, pp:823-828 [Conf]
  28. Mark-A. Krogel, Simon Rawles, Filip Zelezný, Peter A. Flach, Nada Lavrac, Stefan Wrobel
    Comparative Evaluation of Approaches to Propositionalization. [Citation Graph (0, 0)][DBLP]
    ILP, 2003, pp:197-214 [Conf]
  29. Nicolas Lachiche, Peter A. Flach
    1BC2: A True First-Order Bayesian Classifier. [Citation Graph (0, 0)][DBLP]
    ILP, 2002, pp:133-148 [Conf]
  30. Nada Lavrac, Peter A. Flach, Blaz Zupan
    Rule Evaluation Measures: A Unifying View. [Citation Graph (0, 0)][DBLP]
    ILP, 1999, pp:174-185 [Conf]
  31. Peter A. Flach
    Normal Forms for Inductive Logic Programming. [Citation Graph (0, 0)][DBLP]
    ILP, 1997, pp:149-156 [Conf]
  32. Peter A. Flach, Christophe G. Giraud-Carrier, John W. Lloyd
    Strongly Typed Inductive Concept Learning. [Citation Graph (0, 0)][DBLP]
    ILP, 1998, pp:185-194 [Conf]
  33. Peter A. Flach, Nicolas Lachiche
    Decomposing Probability Distributions on Structured Individuals. [Citation Graph (0, 0)][DBLP]
    ILP Work-in-progress reports, 2000, pp:- [Conf]
  34. Peter A. Flach, Nicolas Lachiche
    IBC: A First-Order Bayesian Classifier. [Citation Graph (0, 0)][DBLP]
    ILP, 1999, pp:92-103 [Conf]
  35. Thomas Gärtner, John W. Lloyd, Peter A. Flach
    Kernels for Structured Data. [Citation Graph (0, 0)][DBLP]
    ILP, 2002, pp:66-83 [Conf]
  36. Nada Lavrac, Filip Zelezný, Peter A. Flach
    RSD: Relational Subgroup Discovery through First-Order Feature Construction. [Citation Graph (0, 0)][DBLP]
    ILP, 2002, pp:149-165 [Conf]
  37. Dimitrios Mavroeidis, Peter A. Flach
    Improved Distances for Structured Data. [Citation Graph (0, 0)][DBLP]
    ILP, 2003, pp:251-268 [Conf]
  38. Peter A. Flach
    Towards a Theory of Inductive Logic Programming. [Citation Graph (0, 0)][DBLP]
    ISMIS, 1991, pp:510-519 [Conf]
  39. Peter A. Flach
    Comparing Consequence Relations. [Citation Graph (0, 0)][DBLP]
    KR, 1998, pp:180-189 [Conf]
  40. Peter A. Flach
    A Model of Inductive Reasoning. [Citation Graph (0, 0)][DBLP]
    Logic at Work, 1992, pp:41-56 [Conf]
  41. Ljupco Todorovski, Peter A. Flach, Nada Lavrac
    Predictive Performance of Weghted Relative Accuracy. [Citation Graph (0, 0)][DBLP]
    PKDD, 2000, pp:255-264 [Conf]
  42. Elias Gyftodimos, Peter A. Flach
    Hierarchical Bayesian Networks: An Approach to Classification and Learning for Structured Data. [Citation Graph (0, 0)][DBLP]
    SETN, 2004, pp:291-300 [Conf]
  43. Peter A. Flach
    Rationality Postulates for Induction. [Citation Graph (0, 0)][DBLP]
    TARK, 1996, pp:267-281 [Conf]
  44. Peter A. Flach
    The Use of Functional and Logic Languages in Machine Learning. [Citation Graph (0, 0)][DBLP]
    WFLP, 2000, pp:225-237 [Conf]
  45. Peter A. Flach
    On the state of the art in machine learning: A personal review. [Citation Graph (0, 0)][DBLP]
    Artif. Intell., 2001, v:131, n:1-2, pp:199-222 [Journal]
  46. Peter A. Flach, Iztok Savnik
    Database Dependency Discovery: A Machine Learning Approach. [Citation Graph (0, 0)][DBLP]
    AI Commun., 1999, v:12, n:3, pp:139-160 [Journal]
  47. Tanja Urbancic, Maja Skrjanc, Peter A. Flach
    Web-based analysis of data mining and decision support education. [Citation Graph (0, 0)][DBLP]
    AI Commun., 2002, v:15, n:4, pp:199-204 [Journal]
  48. Iztok Savnik, Peter A. Flach
    Discovery of multivalued dependencies from relations. [Citation Graph (0, 0)][DBLP]
    Intell. Data Anal., 2000, v:4, n:3-4, pp:195-211 [Journal]
  49. Peter A. Flach, Antonis C. Kakas
    Abductive and Inductive Reasoning: Report of the ECAI'96 Workshop. [Citation Graph (0, 0)][DBLP]
    Logic Journal of the IGPL, 1997, v:5, n:5, pp:- [Journal]
  50. Peter A. Flach, Antonis C. Kakas
    Abduction and Induction in AI: Report of the IJCAI'97 Workshop. [Citation Graph (0, 0)][DBLP]
    Logic Journal of the IGPL, 1998, v:6, n:4, pp:651-656 [Journal]
  51. Nada Lavrac, Branko Kavsek, Peter A. Flach, Ljupco Todorovski
    Subgroup Discovery with CN2-SD. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2004, v:5, n:, pp:153-188 [Journal]
  52. Peter A. Flach, Saso Dzeroski
    Editorial: Inductive Logic Programming is Coming of Age. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2001, v:44, n:3, pp:207-209 [Journal]
  53. Peter A. Flach, Nicolas Lachiche
    Confirmation-Guided Discovery of First-Order Rules with Tertius. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2001, v:42, n:1/2, pp:61-95 [Journal]
  54. Peter A. Flach, Nicolas Lachiche
    Naive Bayesian Classification of Structured Data. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2004, v:57, n:3, pp:233-269 [Journal]
  55. Johannes Fürnkranz, Peter A. Flach
    ROC 'n' Rule Learning-Towards a Better Understanding of Covering Algorithms. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2005, v:58, n:1, pp:39-77 [Journal]
  56. Thomas Gärtner, John W. Lloyd, Peter A. Flach
    Kernels and Distances for Structured Data. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2004, v:57, n:3, pp:205-232 [Journal]
  57. Tom Fawcett, Peter A. Flach
    A Response to Webb and Ting's On the Application of ROC Analysis to Predict Classification Performance Under Varying Class Distributions. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2005, v:58, n:1, pp:33-38 [Journal]
  58. Nada Lavrac, Bojan Cestnik, Dragan Gamberger, Peter A. Flach
    Decision Support Through Subgroup Discovery: Three Case Studies and the Lessons Learned. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2004, v:57, n:1-2, pp:115-143 [Journal]
  59. José Hernández-Orallo, César Ferri, Nicolas Lachiche, Peter A. Flach
    The 1st workshop on ROC analysis in artificial intelligence (ROCAI-2004). [Citation Graph (0, 0)][DBLP]
    SIGKDD Explorations, 2004, v:6, n:2, pp:159-161 [Journal]
  60. Nada Lavrac, Peter A. Flach
    An extended transformation approach to inductive logic programming. [Citation Graph (0, 0)][DBLP]
    ACM Trans. Comput. Log., 2001, v:2, n:4, pp:458-494 [Journal]
  61. Peter A. Flach
    Book review: Logic for Learning: Learning Comprehensible Theories from Structured Data by John W. Lloyd, Springer-Verlag, 2003, ISBN 3-540-42027-4. [Citation Graph (0, 0)][DBLP]
    TPLP, 2004, v:4, n:5-6, pp:753-755 [Journal]
  62. Peter A. Flach, Edson Takashi Matsubara
    A Simple Lexicographic Ranker and Probability Estimator. [Citation Graph (0, 0)][DBLP]
    ECML, 2007, pp:575-582 [Conf]
  63. Shaomin Wu, Peter A. Flach, Cèsar Ferri Ramirez
    An Improved Model Selection Heuristic for AUC. [Citation Graph (0, 0)][DBLP]
    ECML, 2007, pp:478-489 [Conf]
  64. Kerstin Eder, Peter A. Flach, Hsiou-Wen Hsueh
    Towards Automating Simulation-Based Design Verification Using ILP. [Citation Graph (0, 0)][DBLP]
    ILP, 2006, pp:154-168 [Conf]
  65. Peter A. Flach
    Putting Things in Order: On the Fundamental Role of Ranking in Classification and Probability Estimation. [Citation Graph (0, 0)][DBLP]
    ECML/PKDD, 2007, pp:2-3 [Conf]

  66. Cost-Based Sampling of Individual Instances. [Citation Graph (, )][DBLP]


  67. Unsupervised Word Decomposition with the Promodes Algorithm. [Citation Graph (, )][DBLP]


  68. Unsupervised Morpheme Discovery with Ungrade. [Citation Graph (, )][DBLP]


  69. On classification, ranking, and probability estimation. [Citation Graph (, )][DBLP]


  70. A Fast Method for Property Prediction in Graph-Structured Data from Positive and Unlabelled Examples. [Citation Graph (, )][DBLP]


  71. The Advantages of Seed Examples in First-Order Multi-class Subgroup Discovery. [Citation Graph (, )][DBLP]


  72. Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order Terms. [Citation Graph (, )][DBLP]


  73. Evaluation Measures for Multi-class Subgroup Discovery. [Citation Graph (, )][DBLP]


  74. Network analysis in natural sciences and engineering. [Citation Graph (, )][DBLP]


Search in 0.101secs, Finished in 0.105secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002