Search the dblp DataBase
Johan A. K. Suykens :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Chuan Lu , Tony Van Gestel , Johan A. K. Suykens , Sabine Van Huffel , Dirk Timmerman , Ignace Vergote Classification of Ovarian Tumors Using Bayesian Least Squares Support Vector Machines. [Citation Graph (0, 0)][DBLP ] AIME, 2003, pp:219-228 [Conf ] Nathalie Pochet , Frizo A. L. Janssens , Frank De Smet , Kathleen Marchal , Ignace Vergote , Johan A. K. Suykens , Bart De Moor M@CBETH: Optimizing Clinical Microarray Classification. [Citation Graph (0, 0)][DBLP ] CSB Workshops, 2005, pp:89-90 [Conf ] Lieveke Ameye , Chuan Lu , Lukas Lukas , Jos De Brabanter , Johan A. K. Suykens , Sabine Van Huffel , Hans Daniels , Gunnar Naulaers , Hugo Devlieger Prediction of mental development of preterm newborns at birth time using LS-SVM. [Citation Graph (0, 0)][DBLP ] ESANN, 2002, pp:167-172 [Conf ] Tony Van Gestel , Johan A. K. Suykens , Bart De Moor , Joos Vandewalle Automatic relevance determination for Least Squares Support Vector Machines classifiers. [Citation Graph (0, 0)][DBLP ] ESANN, 2001, pp:13-18 [Conf ] Luc Hoegaerts , Johan A. K. Suykens , Joos Vandewalle , Bart De Moor Kernel PLS variants for regression. [Citation Graph (0, 0)][DBLP ] ESANN, 2003, pp:200-208 [Conf ] Lukas Lukas , Andy Devos , Johan A. K. Suykens , Leentje Vanhamme , Sabine Van Huffel , Anne Rosemary Tate , Carles Majós , Carles Arús The use of LS-SVM in the classification of brain tumors based on Magnetic Resonance Spectroscopy signals. [Citation Graph (0, 0)][DBLP ] ESANN, 2002, pp:131-136 [Conf ] Kristiaan Pelckmans , Johan A. K. Suykens , Bart De Moor Sparse LS-SVMs using additive regularization with a penalized validation criterion. [Citation Graph (0, 0)][DBLP ] ESANN, 2004, pp:435-440 [Conf ] Johan A. K. Suykens , Lukas Lukas , Joos Vandewalle Sparse least squares Support Vector Machine classifiers. [Citation Graph (0, 0)][DBLP ] ESANN, 2000, pp:37-42 [Conf ] Johan A. K. Suykens , Joos Vandewalle The K.U.Leuven competition data: a challenge for advanced neural network techniques. [Citation Graph (0, 0)][DBLP ] ESANN, 2000, pp:299-304 [Conf ] Johan A. K. Suykens , Joos Vandewalle Improved generalization ability of neurocontrollers by imposing NLq stability constraints. [Citation Graph (0, 0)][DBLP ] ESANN, 1998, pp:99-104 [Conf ] Jos De Brabanter , Kristiaan Pelckmans , Johan A. K. Suykens , Joos Vandewalle Robust Cross-Validation Score Function for Non-linear Function Estimation. [Citation Graph (0, 0)][DBLP ] ICANN, 2002, pp:713-719 [Conf ] Tony Van Gestel , Johan A. K. Suykens , Jos De Brabanter , Bart De Moor , Joos Vandewalle Kernel Canonical Correlation Analysis and Least Squares Support Vector Machines. [Citation Graph (0, 0)][DBLP ] ICANN, 2001, pp:384-389 [Conf ] Bart Hamers , Johan A. K. Suykens , Bart De Moor Compactly Supported RBF Kernels for Sparsifying the Gram Matrix in LS-SVM Regression Models. [Citation Graph (0, 0)][DBLP ] ICANN, 2002, pp:720-726 [Conf ] Kristiaan Pelckmans , Johan A. K. Suykens , Bart De Moor Componentwise Support Vector Machines for Structure Detection. [Citation Graph (0, 0)][DBLP ] ICANN (2), 2005, pp:643-648 [Conf ] Luc Hoegaerts , Johan A. K. Suykens , Joos Vandewalle , Bart De Moor A Comparison of Pruning Algorithms for Sparse Least Squares Support Vector Machines. [Citation Graph (0, 0)][DBLP ] ICONIP, 2004, pp:1247-1253 [Conf ] Kristiaan Pelckmans , Johan A. K. Suykens , Bart De Moor Morozov, Ivanov and Tikhonov Regularization Based LS-SVMs. [Citation Graph (0, 0)][DBLP ] ICONIP, 2004, pp:1216-1222 [Conf ] Johan A. K. Suykens , Joos Vandewalle Generalized Cellular Neural Networks Represented in he NLq Framework. [Citation Graph (0, 0)][DBLP ] ISCAS, 1995, pp:645-648 [Conf ] Johan A. K. Suykens , Mustak E. Yalcin , Joos Vandewalle Coupled chaotic simulated annealing processes. [Citation Graph (0, 0)][DBLP ] ISCAS (3), 2003, pp:582-585 [Conf ] Mustak E. Yalcin , Johan A. K. Suykens , Joos Vandewalle A double scroll based true random bit generator. [Citation Graph (0, 0)][DBLP ] ISCAS (4), 2004, pp:581-584 [Conf ] Mustak E. Yalcin , Johan A. K. Suykens , Joos Vandewalle Spatiotemporal pattern formation in the ACE16k CNN chip. [Citation Graph (0, 0)][DBLP ] ISCAS (6), 2005, pp:5814-5817 [Conf ] Mustak E. Yalcin , Johan A. K. Suykens , Joos Vandewalle On the realization of n-scroll attractors. [Citation Graph (0, 0)][DBLP ] ISCAS (5), 1999, pp:483-486 [Conf ] Marcelo Espinoza , Johan A. K. Suykens , Bart De Moor Load Forecasting Using Fixed-Size Least Squares Support Vector Machines. [Citation Graph (0, 0)][DBLP ] IWANN, 2005, pp:1018-1026 [Conf ] Stijn Viaene , Bart Baesens , Tony Van Gestel , Johan A. K. Suykens , Dirk Van den Poel , Jan Vanthienen , Bart De Moor , Guido Dedene Knowledge Discovery Using Least Squares Support Vector Machine Classifiers: A Direct Marketing Case. [Citation Graph (0, 0)][DBLP ] PKDD, 2000, pp:657-664 [Conf ] Tijl De Bie , Johan A. K. Suykens , Bart De Moor Learning from General Label Constraints. [Citation Graph (0, 0)][DBLP ] SSPR/SPR, 2004, pp:671-679 [Conf ] Chuan Lu , Tony Van Gestel , Johan A. K. Suykens , Sabine Van Huffel , Ignace Vergote , Dirk Timmerman Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. [Citation Graph (0, 0)][DBLP ] Artificial Intelligence in Medicine, 2003, v:28, n:3, pp:281-306 [Journal ] Lukas Lukas , Andy Devos , Johan A. K. Suykens , Leentje Vanhamme , F. A. Howe , Carles Majós , A. Moreno-Torres , M. Van Der Graaf , Anne Rosemary Tate , Carles Arús , Sabine Van Huffel Brain tumor classification based on long echo proton MRS signals. [Citation Graph (0, 0)][DBLP ] Artificial Intelligence in Medicine, 2004, v:31, n:1, pp:73-89 [Journal ] Nathalie Pochet , Frizo A. L. Janssens , Frank De Smet , Kathleen Marchal , Johan A. K. Suykens , Bart De Moor M@CBETH: a microarray classification benchmarking tool. [Citation Graph (0, 0)][DBLP ] Bioinformatics, 2005, v:21, n:14, pp:3185-3186 [Journal ] Nathalie Pochet , Frank De Smet , Johan A. K. Suykens , Bart De Moor Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. [Citation Graph (0, 0)][DBLP ] Bioinformatics, 2004, v:20, n:17, pp:3185-3195 [Journal ] Johan A. K. Suykens , Joos Vandewalle , Bart De Moor Intelligence and Cooperative Search by Coupled Local Minimizers [Citation Graph (0, 0)][DBLP ] CoRR, 2002, v:0, n:, pp:- [Journal ] Tony Van Gestel , Bart Baesens , Peter Van Dijcke , Joao Garcia , Johan A. K. Suykens , Jan Vanthienen A process model to develop an internal rating system: Sovereign credit ratings. [Citation Graph (0, 0)][DBLP ] Decision Support Systems, 2006, v:42, n:2, pp:1131-1151 [Journal ] Stijn Viaene , Bart Baesens , Tony Van Gestel , Johan A. K. Suykens , Dirk Van den Poel , Jan Vanthienen , Bart De Moor , Guido Dedene Knowledge discovery in a direct marketing case using least squares support vector machines. [Citation Graph (0, 0)][DBLP ] Int. J. Intell. Syst., 2001, v:16, n:9, pp:1023-1036 [Journal ] Michel Duhoux , Johan A. K. Suykens , Bart De Moor , Joos Vandewalle Improved Long-Term Temperature Prediction by Chaining of Neural Networks. [Citation Graph (0, 0)][DBLP ] Int. J. Neural Syst., 2001, v:11, n:1, pp:1-10 [Journal ] Luc Hoegaerts , Johan A. K. Suykens , Joos Vandewalle , Bart De Moor Subset based least squares subspace regression in RKHS. [Citation Graph (0, 0)][DBLP ] Neurocomputing, 2005, v:63, n:, pp:293-323 [Journal ] Kristiaan Pelckmans , Jos De Brabanter , Johan A. K. Suykens , Bart De Moor The differogram: Non-parametric noise variance estimation and its use for model selection. [Citation Graph (0, 0)][DBLP ] Neurocomputing, 2005, v:69, n:1-3, pp:100-122 [Journal ] Kristiaan Pelckmans , Johan A. K. Suykens , Bart De Moor Building sparse representations and structure determination on LS-SVM substrates. [Citation Graph (0, 0)][DBLP ] Neurocomputing, 2005, v:64, n:, pp:137-159 [Journal ] Johan A. K. Suykens , Jos De Brabanter , Lukas Lukas , Joos Vandewalle Weighted least squares support vector machines: robustness and sparse approximation. [Citation Graph (0, 0)][DBLP ] Neurocomputing, 2002, v:48, n:1-4, pp:85-105 [Journal ] Tony Van Gestel , Johan A. K. Suykens , Bart Baesens , Stijn Viaene , Jan Vanthienen , Guido Dedene , Bart De Moor , Joos Vandewalle Benchmarking Least Squares Support Vector Machine Classifiers. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2004, v:54, n:1, pp:5-32 [Journal ] Kristiaan Pelckmans , Johan A. K. Suykens , Bart De Moor Additive Regularization Trade-Off: Fusion of Training and Validation Levels in Kernel Methods. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2006, v:62, n:3, pp:217-252 [Journal ] Tony Van Gestel , Johan A. K. Suykens , Gert R. G. Lanckriet , Annemie Lambrechts , Bart De Moor , Joos Vandewalle Bayesian Framework for Least-Squares Support Vector Machine Classifiers, Gaussian Processes, and Kernel Fisher Discriminant Analysis. [Citation Graph (0, 0)][DBLP ] Neural Computation, 2002, v:14, n:5, pp:1115-1147 [Journal ] Kristiaan Pelckmans , Jos De Brabanter , Johan A. K. Suykens , Bart De Moor Handling missing values in support vector machine classifiers. [Citation Graph (0, 0)][DBLP ] Neural Networks, 2005, v:18, n:5-6, pp:684-692 [Journal ] Johan A. K. Suykens , Bart De Moor , Joos Vandewalle Static and dynamic stabilizing neural controllers, applicable to transition between equilibrium points. [Citation Graph (0, 0)][DBLP ] Neural Networks, 1994, v:7, n:5, pp:819-831 [Journal ] Johan A. K. Suykens , Bart De Moor , Joos Vandewalle NLq Theory: A Neural Control Framework with Global Asymptotic Stability Criteria. [Citation Graph (0, 0)][DBLP ] Neural Networks, 1997, v:10, n:4, pp:615-637 [Journal ] Johan A. K. Suykens , Joos Vandewalle , Bart De Moor Optimal control by least squares support vector machines. [Citation Graph (0, 0)][DBLP ] Neural Networks, 2001, v:14, n:1, pp:23-35 [Journal ] Luc Hoegaerts , Lieven De Lathauwer , Ivan Goethals , Johan A. K. Suykens , Joos Vandewalle , Bart De Moor Efficiently updating and tracking the dominant kernel principal components. [Citation Graph (0, 0)][DBLP ] Neural Networks, 2007, v:20, n:2, pp:220-229 [Journal ] Tony Van Gestel , Johan A. K. Suykens , Gert R. G. Lanckriet , Annemie Lambrechts , Bart De Moor , Joos Vandewalle Multiclass LS SVMs Moderated Outputs and Coding Decoding Schemes. [Citation Graph (0, 0)][DBLP ] Neural Processing Letters, 2002, v:15, n:1, pp:45-58 [Journal ] Kristiaan Pelckmans , Marcelo Espinoza , Jos De Brabanter , Johan A. K. Suykens , Bart De Moor Primal-Dual Monotone Kernel Regression. [Citation Graph (0, 0)][DBLP ] Neural Processing Letters, 2005, v:22, n:2, pp:171-182 [Journal ] Johan A. K. Suykens , Philippe Lemmerling , W. Favoreel , Bart De Moor , M. Crepel , P. Briol Modelling the Belgian Gas Consumption Using Neural Networks. [Citation Graph (0, 0)][DBLP ] Neural Processing Letters, 1996, v:4, n:3, pp:157-166 [Journal ] Johan A. K. Suykens , Joos Vandewalle Least Squares Support Vector Machine Classifiers. [Citation Graph (0, 0)][DBLP ] Neural Processing Letters, 1999, v:9, n:3, pp:293-300 [Journal ] Johan A. K. Suykens , Herman Verrelst , Joos Vandewalle On-Line Learning Fokker-Planck Machine. [Citation Graph (0, 0)][DBLP ] Neural Processing Letters, 1998, v:7, n:2, pp:81-89 [Journal ] Tony Van Gestel , Bart Baesens , Johan A. K. Suykens , Dirk Van den Poel , Dirk-Emma Baestaens , Marleen Willekens Bayesian kernel based classification for financial distress detection. [Citation Graph (0, 0)][DBLP ] European Journal of Operational Research, 2006, v:172, n:3, pp:979-1003 [Journal ] Ben Van Calster , Jan Luts , Johan A. K. Suykens , George Condous , Tom Bourne , Dirk Timmerman , Sabine Van Huffel Comparing Methods for Multi-class Probabilities in Medical Decision Making Using LS-SVMs and Kernel Logistic Regression. [Citation Graph (0, 0)][DBLP ] ICANN (2), 2007, pp:139-148 [Conf ] Mustak E. Yalcin , Johan A. K. Suykens , Joos Vandewalle Multi-scroll and hypercube attractors from Josephson junctions. [Citation Graph (0, 0)][DBLP ] ISCAS, 2006, pp:- [Conf ] Kristiaan Pelckmans , Jos De Brabanter , Johan A. K. Suykens , Bart De Moor Support and Quantile Tubes [Citation Graph (0, 0)][DBLP ] CoRR, 2007, v:0, n:, pp:- [Journal ] Kristiaan Pelckmans , Ivan Goethals , Jos De Brabanter , Johan A. K. Suykens , Bart De Moor Componentwise Least Squares Support Vector Machines [Citation Graph (0, 0)][DBLP ] CoRR, 2005, v:0, n:, pp:- [Journal ] Differentiation between brain metastases and glioblastoma multiforme based on MRI, MRS and MRSI. [Citation Graph (, )][DBLP ] Convex optimization for the design of learning machines. [Citation Graph (, )][DBLP ] Survival SVM: a practical scalable algorithm. [Citation Graph (, )][DBLP ] Quadratically Constrained Quadratic Programming for Subspace Selection in Kernel Regression Estimation. [Citation Graph (, )][DBLP ] MINLIP: Efficient Learning of Transformation Models. [Citation Graph (, )][DBLP ] Robustness of Kernel Based Regression: A Comparison of Iterative Weighting Schemes. [Citation Graph (, )][DBLP ] Identifying Customer Profiles in Power Load Time Series Using Spectral Clustering. [Citation Graph (, )][DBLP ] Kernel-Based Learning from Infinite Dimensional 2-Way Tensors. [Citation Graph (, )][DBLP ] Feature Extraction and Classification of EEG Signals for Rapid P300 Mind Spelling. [Citation Graph (, )][DBLP ] Multi-class kernel logistic regression: a fixed-size implementation. [Citation Graph (, )][DBLP ] Variable selection by rank-one updates for least squares support vector machines. [Citation Graph (, )][DBLP ] ICA through an LS-SVM based Kernel CCA Measure for Independence. [Citation Graph (, )][DBLP ] A Weighted Kernel PCA Formulation with Out-of-Sample Extensions for Spectral Clustering Methods. [Citation Graph (, )][DBLP ] Sparse kernel models for spectral clustering using the incomplete Cholesky decomposition. [Citation Graph (, )][DBLP ] Feature Selection in Survival Least Squares Support Vector Machines with Maximal Variation Constraints. [Citation Graph (, )][DBLP ] An empirical assessment of kernel type performance for least squares support vector machine classifiers. [Citation Graph (, )][DBLP ] P300 Detection Based on Feature Extraction in On-line Brain-Computer Interface. [Citation Graph (, )][DBLP ] A Risk Minimization Principle for a Class of Parzen Estimators. [Citation Graph (, )][DBLP ] Semi-supervised Learning of Sparse Linear Models in Mass Spectral Imaging. [Citation Graph (, )][DBLP ] Transductive Rademacher Complexities for Learning Over a Graph. [Citation Graph (, )][DBLP ] A proximal center-based decomposition method for multi-agent convex optimization. [Citation Graph (, )][DBLP ] Application of the proximal center decomposition method to distributed model predictive control. [Citation Graph (, )][DBLP ] Distributed nonlinear optimal control using sequential convex programming and smoothing techniques. [Citation Graph (, )][DBLP ] Robustness analysis for Least Squares kernel based regression: an optimization approach. [Citation Graph (, )][DBLP ] A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection. [Citation Graph (, )][DBLP ] L2-norm multiple kernel learning and its application to biomedical data fusion. [Citation Graph (, )][DBLP ] Search in 0.012secs, Finished in 0.015secs