The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Alex D. Scott: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Alex D. Scott, Gregory B. Sorkin
    Faster Algorithms for MAX CUT and MAX CSP, with Polynomial Expected Time for Sparse Instances. [Citation Graph (0, 0)][DBLP]
    RANDOM-APPROX, 2003, pp:382-395 [Conf]
  2. Béla Bollobás, Alex D. Scott
    Exact Bounds for Judicious Partitions of Graphs. [Citation Graph (0, 0)][DBLP]
    Combinatorica, 1999, v:19, n:4, pp:473-486 [Journal]
  3. A. J. Radcliffe, Alex D. Scott
    Reconstructing Subsets of Reals. [Citation Graph (0, 0)][DBLP]
    Electr. J. Comb., 1999, v:6, n:, pp:- [Journal]
  4. Béla Bollobás, Graham Brightwell, Yoshiharu Kohayakawa, Imre Leader, Alex D. Scott
    Special Issue on Ramsey Theory. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 2003, v:12, n:5-6, pp:467-468 [Journal]
  5. Béla Bollobás, Alex D. Scott
    Max Cut for Random Graphs with a Planted Partition. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 2004, v:13, n:4-5, pp:451-474 [Journal]
  6. Alex D. Scott
    Large Induced Subgraphs with All Degrees Odd. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 1992, v:1, n:, pp:335-349 [Journal]
  7. Alex D. Scott
    Better Bounds for Perpetual Gossiping. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1997, v:75, n:2, pp:189-197 [Journal]
  8. Piotr Berman, Marek Karpinski, Alex D. Scott
    Approximation Hardness and Satisfiability of Bounded Occurrence Instances of SAT [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2003, v:10, n:022, pp:- [Journal]
  9. Piotr Berman, Marek Karpinski, Alex D. Scott
    Approximation Hardness of Short Symmetric Instances of MAX-3SAT [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2003, v:, n:049, pp:- [Journal]
  10. Paul N. Balister, Béla Bollobás, Oliver Riordan, Alex D. Scott
    Alternating Knot Diagrams, Euler Circuits and the Interlace Polynomial. [Citation Graph (0, 0)][DBLP]
    Eur. J. Comb., 2001, v:22, n:1, pp:1-4 [Journal]
  11. Béla Bollobás, Alex D. Scott
    Judicious Partitions of 3-uniform Hypergraphs. [Citation Graph (0, 0)][DBLP]
    Eur. J. Comb., 2000, v:21, n:3, pp:289-300 [Journal]
  12. Alex D. Scott
    Subdivisions of Transitive Tournaments. [Citation Graph (0, 0)][DBLP]
    Eur. J. Comb., 2000, v:21, n:8, pp:1067-1071 [Journal]
  13. Béla Bollobás, Alex D. Scott
    On separating systems. [Citation Graph (0, 0)][DBLP]
    Eur. J. Comb., 2007, v:28, n:4, pp:1068-1071 [Journal]
  14. Alex D. Scott
    On Induced Subgraphs with All Degrees Odd. [Citation Graph (0, 0)][DBLP]
    Graphs and Combinatorics, 2001, v:17, n:3, pp:539-553 [Journal]
  15. A. J. Radcliffe, Alex D. Scott
    Reconstructing under Group Actions. [Citation Graph (0, 0)][DBLP]
    Graphs and Combinatorics, 2006, v:22, n:3, pp:399-419 [Journal]
  16. Béla Bollobás, Alex D. Scott
    A Proof of a Conjecture of Bondy Concerning Paths in Weighted Digraphs. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 1996, v:66, n:2, pp:283-292 [Journal]
  17. Béla Bollobás, Alex D. Scott
    Judicious Partitions of Hypergraphs. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1997, v:78, n:1, pp:15-31 [Journal]
  18. A. J. Radcliffe, Alex D. Scott
    Reconstructing Subsets of Zn. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1998, v:83, n:2, pp:169-187 [Journal]
  19. Alex D. Scott
    Another Simple Proof of a Theorem of Milner. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1999, v:87, n:2, pp:379-380 [Journal]
  20. Alex D. Scott
    Induced Cycles and Chromatic Number. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 1999, v:76, n:2, pp:150-154 [Journal]
  21. Béla Bollobás, Alex D. Scott
    Separating systems and oriented graphs of diameter two. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 2007, v:97, n:2, pp:193-203 [Journal]
  22. Béla Bollobás, Alex D. Scott
    Problems and results on judicious partitions. [Citation Graph (0, 0)][DBLP]
    Random Struct. Algorithms, 2002, v:21, n:3-4, pp:414-430 [Journal]
  23. Luke Pebody, A. J. Radcliffe, Alex D. Scott
    Finite Subsets of the Plane are 18-Reconstructible. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 2003, v:16, n:2, pp:262-275 [Journal]
  24. Béla Bollobás, Alex D. Scott
    Judicious partitions of bounded-degree graphs. [Citation Graph (0, 0)][DBLP]
    Journal of Graph Theory, 2004, v:46, n:2, pp:131-143 [Journal]
  25. David M. Berman, A. J. Radcliffe, Alex D. Scott, Hong Wang, Larry Wargo
    All trees contain a large induced subgraph having all degrees 1 (mod k). [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:175, n:1-3, pp:35-40 [Journal]
  26. Alex D. Scott
    On graph decompositions modulo k. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:175, n:1-3, pp:289-291 [Journal]
  27. Alex D. Scott
    Reconstructing sequences. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:175, n:1-3, pp:231-238 [Journal]
  28. Béla Bollobás, Alex D. Scott
    Independent sets and repeated degrees. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:170, n:1-3, pp:41-49 [Journal]
  29. A. J. Radcliffe, Alex D. Scott
    Every tree contains a large induced subgraph with all degrees odd. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1995, v:140, n:1-3, pp:275-279 [Journal]

  30. Max k-cut and judicious k-partitions. [Citation Graph (, )][DBLP]


Search in 0.014secs, Finished in 0.015secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002