
Search the dblp DataBase
Peter A. Fejer:
[Publications]
[Author Rank by year]
[Coauthors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
 Klaus AmbosSpies, Peter A. Fejer
Embedding of N_{5} and the contiguous degrees. [Citation Graph (0, 0)][DBLP] Ann. Pure Appl. Logic, 2001, v:112, n:23, pp:151188 [Journal]
 Peter A. Fejer
Lattice Representations for Computability Theory. [Citation Graph (0, 0)][DBLP] Ann. Pure Appl. Logic, 1998, v:94, n:13, pp:5374 [Journal]
 Richard Beigel, Harry Buhrman, Peter A. Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrei A. Muchnik, Frank Stephan, Leen Torenvliet
Enumerations of the Kolmogorov Function [Citation Graph (0, 0)][DBLP] Electronic Colloquium on Computational Complexity (ECCC), 2004, v:, n:015, pp: [Journal]
 Klaus AmbosSpies, Peter A. Fejer
Degree Theoretical Splitting Properties of Recursively Enumerable Sets. [Citation Graph (0, 0)][DBLP] J. Symb. Log., 1988, v:53, n:4, pp:11101137 [Journal]
 Klaus AmbosSpies, Peter A. Fejer, Steffen Lempp, Manuel Lerman
Decidability of the TwoQuantifier Theory of the Recursively Enumerable Weak TruthTable Degrees and Other Distributive Upper SemiLattices. [Citation Graph (0, 0)][DBLP] J. Symb. Log., 1996, v:61, n:3, pp:880905 [Journal]
Every incomplete computably enumerable truthtable degree is branching. [Citation Graph (, )][DBLP]
Search in 0.003secs, Finished in 0.003secs
