The SCEAS System
| |||||||

## Search the dblp DataBase
Karl-Heinz Niggl:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- Stephen J. Bellantoni, Karl-Heinz Niggl, Helmut Schwichtenberg
**Higher type recursion, ramification and polynomial time.**[Citation Graph (0, 0)][DBLP] Ann. Pure Appl. Logic, 2000, v:104, n:1-3, pp:17-30 [Journal] - Karl-Heinz Niggl
**Control structures in programs and computational complexity.**[Citation Graph (0, 0)][DBLP] Ann. Pure Appl. Logic, 2005, v:133, n:1-3, pp:247-273 [Journal] - Karl-Heinz Niggl
**Towards the Computational Complexity of PR**[Citation Graph (0, 0)][DBLP]^{omega}-Terms. Ann. Pure Appl. Logic, 1995, v:75, n:1-2, pp:153-178 [Journal] - Karl-Heinz Niggl
**M**[Citation Graph (0, 0)][DBLP]^{omega}Considered as a Programming Language. Ann. Pure Appl. Logic, 1999, v:99, n:1-3, pp:73-92 [Journal] - Lars Kristiansen, Karl-Heinz Niggl
**The Garland Measure and Computational Complexity of Stack Programs.**[Citation Graph (0, 0)][DBLP] Electr. Notes Theor. Comput. Sci., 2003, v:90, n:1, pp:- [Journal] - Karl-Heinz Niggl
**Characterizing polytime through higher type recursion.**[Citation Graph (0, 0)][DBLP] Electr. Notes Theor. Comput. Sci., 2000, v:35, n:, pp:- [Journal] - Stephen J. Bellantoni, Karl-Heinz Niggl
**Ranking Primitive Recursions: The Low Grzegorczyk Classes Revisited.**[Citation Graph (0, 0)][DBLP] SIAM J. Comput., 1999, v:29, n:2, pp:401-415 [Journal] - Karl-Heinz Niggl, Henning Wunderlich
**Certifying Polynomial Time and Linear/Polynomial Space for Imperative Programs.**[Citation Graph (0, 0)][DBLP] SIAM J. Comput., 2006, v:35, n:5, pp:1122-1147 [Journal] - Ulrich Berger, Karl-Heinz Niggl, Bernhard Reus
**Preface.**[Citation Graph (0, 0)][DBLP] Theor. Comput. Sci., 2001, v:264, n:2, pp:169- [Journal] - Lars Kristiansen, Karl-Heinz Niggl
**On the computational complexity of imperative programming languages.**[Citation Graph (0, 0)][DBLP] Theor. Comput. Sci., 2004, v:318, n:1-2, pp:139-161 [Journal] **Non-definability of the Ackermann function with type 1 partial primitive recursion.**[Citation Graph (, )][DBLP]**A restricted computation model on Scott domains and its partial primitive recursive functionals.**[Citation Graph (, )][DBLP]**Subrecursive functions on partial sequences.**[Citation Graph (, )][DBLP]**The m\mu-measure as a tool for classifying computational complexity.**[Citation Graph (, )][DBLP]
Search in 0.002secs, Finished in 0.003secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |