
Search the dblp DataBase
Matthew Foreman:
[Publications]
[Author Rank by year]
[Coauthors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
 James Cummings, Matthew Foreman, Menachem Magidor
Canonical structure in the universe of set theory: part one. [Citation Graph (0, 0)][DBLP] Ann. Pure Appl. Logic, 2004, v:129, n:13, pp:211243 [Journal]
 Matthew Foreman, Menachem Magidor
Large Cardinals and Definable Counterexamples to the Continuum Hypothesis. [Citation Graph (0, 0)][DBLP] Ann. Pure Appl. Logic, 1995, v:76, n:1, pp:4797 [Journal]
 James Cummings, Matthew Foreman, Menachem Magidor
Canonical structure in the universe of set theory: part two. [Citation Graph (0, 0)][DBLP] Ann. Pure Appl. Logic, 2006, v:142, n:13, pp:5575 [Journal]
 James Cummings, Matthew Foreman, Menachem Magidor
The noncompactness of square. [Citation Graph (0, 0)][DBLP] J. Symb. Log., 2003, v:68, n:2, pp:637643 [Journal]
 Matthew Foreman
Games Played on Boolean Algebras. [Citation Graph (0, 0)][DBLP] J. Symb. Log., 1983, v:48, n:3, pp:714723 [Journal]
 Matthew Foreman, Menachem Magidor
A Very Weak Square Principle. [Citation Graph (0, 0)][DBLP] J. Symb. Log., 1997, v:62, n:1, pp:175196 [Journal]
 Matthew Foreman, Menachem Magidor, RalfDieter Schindler
The Consistency Strength of Successive Cardinals with The Tree Property. [Citation Graph (0, 0)][DBLP] J. Symb. Log., 2001, v:66, n:4, pp:18371847 [Journal]
 Matthew Foreman, Menachem Magidor, Saharon Shelah
0 ^{#} and Some Forcing Principles. [Citation Graph (0, 0)][DBLP] J. Symb. Log., 1986, v:51, n:1, pp:3946 [Journal]
Organic and tight. [Citation Graph (, )][DBLP]
Search in 0.003secs, Finished in 0.003secs
