The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Alex J. Smola: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Arthur Gretton, Olivier Bousquet, Alex J. Smola, Bernhard Schölkopf
    Measuring Statistical Dependence with Hilbert-Schmidt Norms. [Citation Graph (0, 0)][DBLP]
    ALT, 2005, pp:63-77 [Conf]
  2. Jyrki Kivinen, Alex J. Smola, Robert C. Williamson
    Large Margin Classification for Moving Targets. [Citation Graph (0, 0)][DBLP]
    ALT, 2002, pp:113-127 [Conf]
  3. Bernhard Schölkopf, Ralf Herbrich, Alex J. Smola
    A Generalized Representer Theorem. [Citation Graph (0, 0)][DBLP]
    COLT/EuroCOLT, 2001, pp:416-426 [Conf]
  4. Alex J. Smola, Risi Imre Kondor
    Kernels and Regularization on Graphs. [Citation Graph (0, 0)][DBLP]
    COLT, 2003, pp:144-158 [Conf]
  5. Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf
    Entropy Numbers of Linear Function Classes. [Citation Graph (0, 0)][DBLP]
    COLT, 2000, pp:309-319 [Conf]
  6. Bernhard Schölkopf, Alex J. Smola, Phil Knirsch, Chris Burges
    Fast Approximation of Support Vector Kernel Expansions, and an Interpretation of Clustering as Approximation in Feature Spaces. [Citation Graph (0, 0)][DBLP]
    DAGM-Symposium, 1998, pp:125-132 [Conf]
  7. Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf
    Entropy Numbers, Operators and Support Vector Kernels. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1999, pp:285-299 [Conf]
  8. Alex J. Smola, Robert C. Williamson, Sebastian Mika, Bernhard Schölkopf
    Regularized Principal Manifolds. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1999, pp:214-229 [Conf]
  9. Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Christian Lemmen, Alex J. Smola, Thomas Lengauer, Klaus-Robert Müller
    Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites. [Citation Graph (0, 0)][DBLP]
    German Conference on Bioinformatics, 1999, pp:37-43 [Conf]
  10. Klaus-Robert Müller, Alex J. Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, Vladimir Vapnik
    Predicting Time Series with Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    ICANN, 1997, pp:999-1004 [Conf]
  11. Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
    Kernel Principal Component Analysis. [Citation Graph (0, 0)][DBLP]
    ICANN, 1997, pp:583-588 [Conf]
  12. Yasemin Altun, Thomas Hofmann, Alex J. Smola
    Gaussian process classification for segmenting and annotating sequences. [Citation Graph (0, 0)][DBLP]
    ICML, 2004, pp:- [Conf]
  13. Colin Campbell, Nello Cristianini, Alex J. Smola
    Query Learning with Large Margin Classifiers. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:111-118 [Conf]
  14. Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, Alex J. Smola
    Multi-Instance Kernels. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:179-186 [Conf]
  15. Quoc V. Le, Alex J. Smola, Thomas Gärtner
    Simpler knowledge-based support vector machines. [Citation Graph (0, 0)][DBLP]
    ICML, 2006, pp:521-528 [Conf]
  16. Julian John McAuley, Tibério S. Caetano, Alex J. Smola, Matthias O. Franz
    Learning high-order MRF priors of color images. [Citation Graph (0, 0)][DBLP]
    ICML, 2006, pp:617-624 [Conf]
  17. Cheng Soon Ong, Alex J. Smola
    Machine Learning with Hyperkernels. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:568-575 [Conf]
  18. Alex J. Smola, Bernhard Schölkopf
    Sparse Greedy Matrix Approximation for Machine Learning. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:911-918 [Conf]
  19. S. V. N. Vishwanathan, Alex J. Smola, M. Narasimha Murty
    SimpleSVM. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:760-767 [Conf]
  20. Athanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola
    Choosing in Support Vector Regression with Different Noise Models: Theory and Experiments. [Citation Graph (0, 0)][DBLP]
    IJCNN (5), 2000, pp:199-204 [Conf]
  21. Vladimir Nikulin, Alex J. Smola
    Universal Clustering with Regularization in Probabilistic Space. [Citation Graph (0, 0)][DBLP]
    MLDM, 2005, pp:142-152 [Conf]
  22. Bernhard Schölkopf, Alex J. Smola
    A Short Introduction to Learning with Kernels. [Citation Graph (0, 0)][DBLP]
    Machine Learning Summer School, 2002, pp:41-64 [Conf]
  23. Alex J. Smola, Bernhard Schölkopf
    Bayesian Kernel Methods. [Citation Graph (0, 0)][DBLP]
    Machine Learning Summer School, 2002, pp:65-117 [Conf]
  24. Chiranjib Bhattacharyya, Pannagadatta K. Shivaswamy, Alex J. Smola
    A Second Order Cone programming Formulation for Classifying Missing Data. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  25. Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola, Vladimir Vapnik
    Support Vector Regression Machines. [Citation Graph (0, 0)][DBLP]
    NIPS, 1996, pp:155-161 [Conf]
  26. Thomas Gärtner, Quoc V. Le, Simon Burton, Alex J. Smola, S. V. N. Vishwanathan
    Large-Scale Multiclass Transduction. [Citation Graph (0, 0)][DBLP]
    NIPS, 2005, pp:- [Conf]
  27. Jyrki Kivinen, Alex J. Smola, Robert C. Williamson
    Online Learning with Kernels. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:785-792 [Conf]
  28. Adam Kowalczyk, Alex J. Smola, Robert C. Williamson
    Kernel Machines and Boolean Functions. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:439-446 [Conf]
  29. Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
    Invariant Feature Extraction and Classification in Kernel Spaces. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:526-532 [Conf]
  30. Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, Gunnar Rätsch
    Kernel PCA and De-Noising in Feature Spaces. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:536-542 [Conf]
  31. Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika
    v-Arc: Ensemble Learning in the Presence of Outliers. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:561-567 [Conf]
  32. Bernhard Schölkopf, Peter L. Bartlett, Alex J. Smola, Robert C. Williamson
    Shrinking the Tube: A New Support Vector Regression Algorithm. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:330-336 [Conf]
  33. Bernhard Schölkopf, Patrice Simard, Alex J. Smola, Vladimir Vapnik
    Prior Knowledge in Support Vector Kernels. [Citation Graph (0, 0)][DBLP]
    NIPS, 1997, pp:- [Conf]
  34. Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, John C. Platt
    Support Vector Method for Novelty Detection. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:582-588 [Conf]
  35. Alex J. Smola, Peter L. Bartlett
    Sparse Greedy Gaussian Process Regression. [Citation Graph (0, 0)][DBLP]
    NIPS, 2000, pp:619-625 [Conf]
  36. Alex J. Smola, Thilo-Thomas Frieß, Bernhard Schölkopf
    Semiparametric Support Vector and Linear Programming Machines. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:585-591 [Conf]
  37. Alex J. Smola, Zoltán L. Óvári, Robert C. Williamson
    Regularization with Dot-Product Kernels. [Citation Graph (0, 0)][DBLP]
    NIPS, 2000, pp:308-314 [Conf]
  38. Alex J. Smola, Bernhard Schölkopf
    From Regularization Operators to Support Vector Kernels. [Citation Graph (0, 0)][DBLP]
    NIPS, 1997, pp:- [Conf]
  39. Alex J. Smola, John Shawe-Taylor, Bernhard Schölkopf, Robert C. Williamson
    The Entropy Regularization Information Criterion. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:342-348 [Conf]
  40. Vladimir Vapnik, Steven E. Golowich, Alex J. Smola
    Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. [Citation Graph (0, 0)][DBLP]
    NIPS, 1996, pp:281-287 [Conf]
  41. S. V. N. Vishwanathan, Alex J. Smola
    Binet-Cauchy Kernels. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  42. Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Sebastian Mika, Takashi Onoda, Klaus-Robert Müller
    Robust Ensemble Learning for Data Mining. [Citation Graph (0, 0)][DBLP]
    PAKDD, 2000, pp:341-344 [Conf]
  43. Alex J. Smola, Bernhard Schölkopf
    On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion. [Citation Graph (0, 0)][DBLP]
    Algorithmica, 1998, v:22, n:1/2, pp:211-231 [Journal]
  44. Bernhard Schölkopf, Klaus-Robert Müller, Alex J. Smola
    Lernen mit Kernen: Support-Vektor-Methoden zur Analyse hochdimensionaler Daten. [Citation Graph (0, 0)][DBLP]
    Inform., Forsch. Entwickl., 1999, v:14, n:3, pp:154-163 [Journal]
  45. Glenn Fung, Olvi L. Mangasarian, Alex J. Smola
    Minimal Kernel Classifiers. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2002, v:3, n:, pp:303-321 [Journal]
  46. Alex J. Smola, Sebastian Mika, Bernhard Schölkopf, Robert C. Williamson
    Regularized Principal Manifolds. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2001, v:1, n:, pp:179-209 [Journal]
  47. S. V. N. Vishwanathan, Nicol N. Schraudolph, Alex J. Smola
    Step Size Adaptation in Reproducing Kernel Hilbert Space. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2006, v:7, n:, pp:1107-1133 [Journal]
  48. Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, Robert C. Williamson
    Estimating the Support of a High-Dimensional Distribution. [Citation Graph (0, 0)][DBLP]
    Neural Computation, 2001, v:13, n:7, pp:1443-1471 [Journal]
  49. Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
    Nonlinear Component Analysis as a Kernel Eigenvalue Problem. [Citation Graph (0, 0)][DBLP]
    Neural Computation, 1998, v:10, n:5, pp:1299-1319 [Journal]
  50. Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, Peter L. Bartlett
    New Support Vector Algorithms. [Citation Graph (0, 0)][DBLP]
    Neural Computation, 2000, v:12, n:5, pp:1207-1245 [Journal]
  51. Athanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola
    Experimentally optimal v in support vector regression for different noise models and parameter settings. [Citation Graph (0, 0)][DBLP]
    Neural Networks, 2004, v:17, n:1, pp:127-141 [Journal]
  52. Athanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola
    Experimentally optimal nu in support vector regression for different noise models and parameter settings. [Citation Graph (0, 0)][DBLP]
    Neural Networks, 2005, v:18, n:2, pp:205-0 [Journal]
  53. Alex J. Smola, Bernhard Schölkopf, Klaus-Robert Müller
    The connection between regularization operators and support vector kernels. [Citation Graph (0, 0)][DBLP]
    Neural Networks, 1998, v:11, n:4, pp:637-649 [Journal]
  54. Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
    Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces. [Citation Graph (0, 0)][DBLP]
    IEEE Trans. Pattern Anal. Mach. Intell., 2003, v:25, n:5, pp:623-633 [Journal]
  55. Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf
    Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 2001, v:47, n:6, pp:2516-2532 [Journal]
  56. Alex J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf
    A Hilbert Space Embedding for Distributions. [Citation Graph (0, 0)][DBLP]
    ALT, 2007, pp:13-31 [Conf]
  57. Le Song, Alex J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo
    Supervised feature selection via dependence estimation. [Citation Graph (0, 0)][DBLP]
    ICML, 2007, pp:823-830 [Conf]
  58. Choon Hui Teo, Alex J. Smola, S. V. N. Vishwanathan, Quoc V. Le
    A scalable modular convex solver for regularized risk minimization. [Citation Graph (0, 0)][DBLP]
    KDD, 2007, pp:727-736 [Conf]

  59. Performance Evaluation of the NVIDIA GeForce 8800 GTX GPU for Machine Learning. [Citation Graph (, )][DBLP]


  60. Learning Graph Matching. [Citation Graph (, )][DBLP]


  61. Tailoring density estimation via reproducing kernel moment matching. [Citation Graph (, )][DBLP]


  62. Estimating labels from label proportions. [Citation Graph (, )][DBLP]


  63. Colored Maximum Variance Unfolding. [Citation Graph (, )][DBLP]


  64. COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking . [Citation Graph (, )][DBLP]


  65. Bundle Methods for Machine Learning. [Citation Graph (, )][DBLP]


  66. A Kernel Statistical Test of Independence. [Citation Graph (, )][DBLP]


  67. Convex Learning with Invariances. [Citation Graph (, )][DBLP]


  68. Kernelized Sorting. [Citation Graph (, )][DBLP]


  69. Kernel Measures of Independence for non-iid Data. [Citation Graph (, )][DBLP]


  70. Improving Maximum Margin Matrix Factorization. [Citation Graph (, )][DBLP]


  71. Learning Graph Matching. [Citation Graph (, )][DBLP]


  72. Adaptive collaborative filtering. [Citation Graph (, )][DBLP]


  73. Semi-Markov Models for Sequence Segmentation. [Citation Graph (, )][DBLP]


  74. Learning Graph Matching [Citation Graph (, )][DBLP]


  75. Feature Hashing for Large Scale Multitask Learning [Citation Graph (, )][DBLP]


Search in 0.007secs, Finished in 0.009secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002