|
Search the dblp DataBase
Christopher A. Rodger:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
- David James Ashe, Christopher A. Rodger, Hung-Lin Fu
All 2-Regular Leaves of Partial 6-cycle Systems. [Citation Graph (0, 0)][DBLP] Ars Comb., 2005, v:76, n:, pp:- [Journal]
- Hung-Lin Fu, Christopher A. Rodger
Almost Resolvable Directed m-cycle systems: m = 3 (mod 6). [Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:53, n:, pp:- [Journal]
- Hung-Lin Fu, Christopher A. Rodger, Dinesh G. Sarvate
The existence of group divisible designs with first and second associates, having block size 3. [Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:54, n:, pp:- [Journal]
- Michael Edwin Raines, Christopher A. Rodger
Embedding Partial Extended Triple Systems when l >= 2. [Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:53, n:, pp:- [Journal]
- Darryn E. Bryant, Dean G. Hoffman, Christopher A. Rodger
5-Cycle Systems with Holes. [Citation Graph (0, 0)][DBLP] Des. Codes Cryptography, 1996, v:8, n:1-2, pp:103-108 [Journal]
- David James Ashe, Hung-Lin Fu, Christopher A. Rodger
A solution to the forest leave problem for partial 6-cycle systems. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:281, n:1-3, pp:27-41 [Journal]
- Chin-Mei Fu, Hung-Lin Fu, Christopher A. Rodger
Decomposing KncupP into triangles. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:284, n:1-3, pp:131-136 [Journal]
- C. Grant, Christopher A. Rodger
An n to 2n embedding of incomplete idempotent latin squares for small values ofn. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2000, v:211, n:, pp:53-74 [Journal]
- Dean G. Hoffman, Charles Curtis Lindner, Christopher A. Rodger
A partial 2k-cycle system of order n can be embedded in a 2k-cycle system of order kn+c(k), kgeq3, where c(k) is a quadratic function of k. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:261, n:1-3, pp:325-336 [Journal]
- C. David Leach, Christopher A. Rodger
Hamilton decompositions of complete graphs with a 3-factor leave. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:279, n:1-3, pp:337-344 [Journal]
- Charles Curtis Lindner, Christopher A. Rodger
A connection between varieties of quasigroups and graph decompositions. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:272, n:2-3, pp:127-137 [Journal]
- J. W. McGee, Christopher A. Rodger
Embedding coverings of 2-paths with 3-paths. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:284, n:1-3, pp:217-223 [Journal]
- Christopher A. Rodger, Dean G. Hoffman
Preface. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:284, n:1-3, pp:1-7 [Journal]
- Peter D. Johnson Jr., Christopher A. Rodger
Coloring the vertices of a graph with measurable sets in a probability space. [Citation Graph (0, 0)][DBLP] Eur. J. Comb., 2005, v:26, n:2, pp:251-257 [Journal]
- H. L. Fu, Christopher A. Rodger
Four-Cycle Systems with Two-Regular Leaves. [Citation Graph (0, 0)][DBLP] Graphs and Combinatorics, 2001, v:17, n:3, pp:457-461 [Journal]
- Elizabeth J. Billington, Hung-Lin Fu, Christopher A. Rodger
Packing lambda-Fold Complete Multipartite Graphs with 4-Cycles. [Citation Graph (0, 0)][DBLP] Graphs and Combinatorics, 2005, v:21, n:2, pp:169-186 [Journal]
- Darryn E. Bryant, Christopher A. Rodger
The Doyen-Wilson Theorem Extended to 5-Cycles. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1994, v:68, n:1, pp:218-225 [Journal]
- Hung-Lin Fu, Christopher A. Rodger
Group Divisible Designs with Two Associate Classes: n=2 orm=2. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1998, v:83, n:1, pp:94-117 [Journal]
- Anthony J. W. Hilton, Matthew Johnson 0002, Christopher A. Rodger, Evan B. Wantland
Amalgamations of connected k-factorizations. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2003, v:88, n:2, pp:267-279 [Journal]
- Anthony J. W. Hilton, Michael E. Mays, Christopher A. Rodger, C. St. J. A. Nash-Williams
Hamiltonian double latin squares. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2003, v:87, n:1, pp:81-129 [Journal]
- Anthony J. W. Hilton, Christopher A. Rodger
The embedding of partial triple systems when 4 divides lambda. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1991, v:56, n:1, pp:109-137 [Journal]
- Katherine Heinrich, Charles Curtis Lindner, Christopher A. Rodger
Almost resolvable decompositions of 2Kn into cycles of odd length. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1988, v:49, n:2, pp:218-232 [Journal]
- Dean G. Hoffman, Christopher A. Rodger
Class one graphs. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1988, v:44, n:3, pp:372-376 [Journal]
- Dean G. Hoffman, Christopher A. Rodger, Alexander Rosa
Maximal Sets of 2-Factors and Hamiltonian Cycles. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1993, v:57, n:1, pp:69-76 [Journal]
- C. David Leach, Christopher A. Rodger
Fair Hamilton Decompositions of Complete Multipartite Graphs. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2002, v:85, n:2, pp:290-296 [Journal]
- Charles Curtis Lindner, Kevin T. Phelps, Christopher A. Rodger
The spectrum for 2-perfect 6-cycle systems. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1991, v:57, n:1, pp:76-85 [Journal]
- Christopher A. Rodger, S. J. Stubbs
Embedding partial triple systems. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1987, v:44, n:2, pp:241-252 [Journal]
- Anthony J. W. Hilton, Christopher A. Rodger
Hamiltonian decompositions of complete regular s-partite graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1986, v:58, n:1, pp:63-78 [Journal]
- Charles C. Lindner, Christopher A. Rodger, Douglas R. Stinson
Nesting of cycle systems of odd length. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1989, v:77, n:1-3, pp:191-203 [Journal]
- Charles C. Lindner, Christopher A. Rodger, Douglas R. Stinson
Small embeddings for partial cycle systems of odd length. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1990, v:80, n:3, pp:273-280 [Journal]
- Darryn E. Bryant, Christopher A. Rodger, Erin R. Spicer
Embeddings of m-cycle systems and incomplete m-cycle systems: m <= 14. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1997, v:171, n:1-3, pp:55-75 [Journal]
- Charles C. Lindner, Christopher A. Rodger
On equationally defining extended cycle systems, . [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1997, v:173, n:1-3, pp:1-14 [Journal]
- Michael Edwin Raines, Christopher A. Rodger
Embedding partial extended triple systems and totally symmetric quasigroups. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1997, v:176, n:1-3, pp:211-222 [Journal]
- Frank E. Bennett, Kevin T. Phelps, Christopher A. Rodger, J. Yin, Lie Zhu
Existence of perfect Mendelsohn designs with k=5 and lambda>1. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1992, v:103, n:2, pp:129-137 [Journal]
- Frank E. Bennett, Kevin T. Phelps, Christopher A. Rodger, Lie Zhu
Constructions of perfect Mendelsohn designs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1992, v:103, n:2, pp:139-151 [Journal]
- Kevin T. Phelps, Christopher A. Rodger
Nesting partial Steiner triple systems with 2-regular leave graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1993, v:112, n:1-3, pp:165-172 [Journal]
Resolvable 4-cycle group divisible designs with two associate classes: Part size even. [Citation Graph (, )][DBLP]
All graphs with maximum degree three whose complements have 4-cycle decompositions. [Citation Graph (, )][DBLP]
Resolvable gregarious cycle decompositions of complete equipartite graphs. [Citation Graph (, )][DBLP]
Maximal sets of hamilton cycles in K2p-F. [Citation Graph (, )][DBLP]
Embedding Steiner triple systems in hexagon triple systems. [Citation Graph (, )][DBLP]
Search in 0.006secs, Finished in 0.009secs
|