The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Jeffrey H. Dinitz: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Jeffrey H. Dinitz, David K. Garnick
    Holey factorizations. [Citation Graph (0, 0)][DBLP]
    Ars Comb., 1996, v:44, n:, pp:- [Journal]
  2. Charles J. Colbourn, Jeffrey H. Dinitz, Alexander Rosa
    Bicoloring Steiner Triple Systems. [Citation Graph (0, 0)][DBLP]
    Electr. J. Comb., 1999, v:6, n:, pp:- [Journal]
  3. Jeffrey H. Dinitz, Douglas R. Stinson, Lie Zhu
    On the Spectra of Certain Classes of Room Frames. [Citation Graph (0, 0)][DBLP]
    Electr. J. Comb., 1994, v:1, n:, pp:- [Journal]
  4. Charles J. Colbourn, Jeffrey H. Dinitz, Mieczyslaw Wojtas
    Thwarts in Transversal Designs. [Citation Graph (0, 0)][DBLP]
    Des. Codes Cryptography, 1995, v:5, n:3, pp:189-197 [Journal]
  5. Jeffrey H. Dinitz, Esther R. Lamken
    HOPs and COPs: Room frames with partitionable transversals. [Citation Graph (0, 0)][DBLP]
    Des. Codes Cryptography, 2000, v:19, n:1, pp:5-26 [Journal]
  6. Dan Archdeacon, Marisa Debowsky, Jeffrey H. Dinitz, Heather Gavlas
    Cycle systems in the complete bipartite graph minus a one-factor. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2004, v:284, n:1-3, pp:37-43 [Journal]
  7. Charles J. Colbourn, Jeffrey H. Dinitz, Dalibor Froncek
    Preface. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2003, v:261, n:1-3, pp:1-2 [Journal]
  8. Jeffrey H. Dinitz, Alan C. H. Ling
    The existence of referee squares. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2001, v:232, n:1-3, pp:109-112 [Journal]
  9. Jeffrey H. Dinitz, Esther R. Lamken, Alan C. H. Ling
    Complementary partial resolution squares for Steiner triple systems. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2003, v:261, n:1-3, pp:243-254 [Journal]
  10. Charles J. Colbourn, Jeffrey H. Dinitz, Douglas R. Stinson
    Quorum Systems Constructed from Combinatorial Designs. [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 2001, v:169, n:2, pp:160-173 [Journal]
  11. Dan Archdeacon, Jeffrey H. Dinitz, Douglas R. Stinson, Timothy W. Tillson
    Some New Row-Complete Latin Squares. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1980, v:29, n:3, pp:395-398 [Journal]
  12. Charles J. Colbourn, Jeffrey H. Dinitz
    Complete Arcs in Steiner Triple Systems. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1997, v:80, n:2, pp:320-333 [Journal]
  13. Charles J. Colbourn, Jeffrey H. Dinitz, Douglas R. Stinson
    Spanning sets and scattering sets in Steiner triple systems. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1991, v:57, n:1, pp:46-59 [Journal]
  14. Jeffrey H. Dinitz
    The existence of room 5-cubes. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1987, v:45, n:1, pp:125-138 [Journal]
  15. Jeffrey H. Dinitz, Peter Dukes, Alan C. H. Ling
    Sets of three pairwise orthogonal Steiner triple systems. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 2003, v:101, n:1, pp:90-116 [Journal]
  16. Jeffrey H. Dinitz, Esther R. Lamken
    Howell Designs with Sub-designs. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 1994, v:65, n:2, pp:268-301 [Journal]
  17. Jeffrey H. Dinitz, Alan C. H. Ling, Douglas R. Stinson
    Fault-tolerant routings with minimum optical index. [Citation Graph (0, 0)][DBLP]
    Networks, 2006, v:48, n:1, pp:47-55 [Journal]
  18. Jeffrey H. Dinitz, Douglas R. Stinson
    Mols with holes. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1983, v:44, n:2, pp:145-154 [Journal]
  19. Jeffrey H. Dinitz, Douglas R. Stinson, W. D. Wallis
    Room squares with holes of sides 3, 5, and 7. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1983, v:47, n:, pp:221-228 [Journal]
  20. Dan Archdeacon, Jeffrey H. Dinitz
    Constructing indecomposable 1-factorizations of the complete multigraph. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1991, v:92, n:1-3, pp:9-19 [Journal]
  21. Dan Archdeacon, Jeffrey H. Dinitz
    Indecomposable triple systems exist for all lambda. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1993, v:113, n:1-3, pp:1-6 [Journal]

  22. Sequentially Perfect and Uniform One-Factorizations of the Complete Graph. [Citation Graph (, )][DBLP]


  23. On orthogonal generalized equitable rectangles. [Citation Graph (, )][DBLP]


  24. Preface. [Citation Graph (, )][DBLP]


  25. Maximum uniformly resolvable designs with block sizes 2 and 4. [Citation Graph (, )][DBLP]


Search in 0.018secs, Finished in 0.020secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002