Search the dblp DataBase
Donald A. Preece :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
P. J. Owens , Donald A. Preece Some new non-cyclic latin squares that have cyclic and Youden properties. [Citation Graph (0, 0)][DBLP ] Ars Comb., 1996, v:44, n:, pp:- [Journal ] Donald A. Preece , B. J. Vowden , Nicholas C. K. Phillips Double Youden rectangles of sizes p(2p+1) and (p+1)(2p+1). [Citation Graph (0, 0)][DBLP ] Ars Comb., 1999, v:51, n:, pp:- [Journal ] B. J. Vowden , Donald A. Preece Some New Infinite Series of Freeman-Youden Rectangles. [Citation Graph (0, 0)][DBLP ] Ars Comb., 1999, v:51, n:, pp:- [Journal ] Ian Anderson , Donald A. Preece Power-sequence terraces for where n is an odd prime power. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2003, v:261, n:1-3, pp:31-58 [Journal ] Ian Anderson , Donald A. Preece Narcissistic half-and-half power-sequence terraces for Zn with n=pqt . [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2004, v:279, n:1-3, pp:33-60 [Journal ] Ian Anderson , Donald A. Preece Some power-sequence terraces for Zpq with as few segments as possible. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2005, v:293, n:1-3, pp:29-59 [Journal ] R. A. Bailey , Matthew A. Ollis , Donald A. Preece Round-dance neighbour designs from terraces. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2003, v:266, n:1-3, pp:69-86 [Journal ] John P. Morgan , Donald A. Preece , David H. Rees Nested balanced incomplete block designs. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2001, v:231, n:1-3, pp:351-389 [Journal ] Matthew A. Ollis , Donald A. Preece Sectionable terraces and the (generalised) Oberwolfach problem. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2003, v:266, n:1-3, pp:399-416 [Journal ] Nicholas C. K. Phillips , Donald A. Preece , Walter D. Wallis The seven classes of 5×6 triple arrays. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2005, v:293, n:1-3, pp:213-218 [Journal ] Andries E. Brouwer , Peter J. Cameron , Willem H. Haemers , D. A. Preece Self-dual, not self-polar. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2006, v:306, n:23, pp:3051-3053 [Journal ] N. C. K. Phillips , D. A. Preece Tight single-change covering designs with v = 12, K = 4. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1999, v:197, n:, pp:657-670 [Journal ] Donald A. Preece , B. J. Vowden Some series of cyclic balanced hyper-graeco-Latin superimpositions of three Youden squares. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1999, v:197, n:, pp:671-682 [Journal ] David H. Rees , Donald A. Preece Perfect Graeco-Latin balanced incomplete block designs (pergolas). [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1999, v:197, n:, pp:691-712 [Journal ] Donald A. Preece Some 6 × 11 Youden squares and double Youden rectangles. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1997, v:167, n:, pp:527-541 [Journal ] P. J. Owens , Donald A. Preece Aspects of complete sets of 9 × 9 pairwise orthogonal latin squares. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1997, v:167, n:, pp:519-525 [Journal ] Donald A. Preece , B. J. Vowden Graeco-Latin squares with embedded balanced superimpositions of Youden squares. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1995, v:138, n:1-3, pp:353-363 [Journal ] Donald A. Preece How many 7 × 7 latin squares can be partitioned into Youden squares? [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1995, v:138, n:1-3, pp:343-352 [Journal ] Donald A. Preece Double Youden rectangles - an update with examples of size 5x11. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1994, v:125, n:1-3, pp:309-317 [Journal ] D. A. Preece , P. W. Brading , C. W. H. Lam , M. Côté Balanced 6 × 6 designs for 4 equally replicated treatments. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1994, v:125, n:1-3, pp:319-327 [Journal ] Some da capo directed power-sequence Zn+1 terraces with n an odd prime power. [Citation Graph (, )][DBLP ] A general approach to constructing power-sequence terraces for Zn . [Citation Graph (, )][DBLP ] Some I terraces from I power-sequences, n being an odd prime. [Citation Graph (, )][DBLP ] Combinatorially fruitful properties of 3.2-1 and 3.2-2 modulo p. [Citation Graph (, )][DBLP ] On balanced incomplete-block designs with repeated blocks. [Citation Graph (, )][DBLP ] Search in 0.005secs, Finished in 0.007secs