The SCEAS System
| |||||||

## Search the dblp DataBase
Donald A. Preece:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- P. J. Owens, Donald A. Preece
**Some new non-cyclic latin squares that have cyclic and Youden properties.**[Citation Graph (0, 0)][DBLP] Ars Comb., 1996, v:44, n:, pp:- [Journal] - Donald A. Preece, B. J. Vowden, Nicholas C. K. Phillips
**Double Youden rectangles of sizes p(2p+1) and (p+1)(2p+1).**[Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:51, n:, pp:- [Journal] - B. J. Vowden, Donald A. Preece
**Some New Infinite Series of Freeman-Youden Rectangles.**[Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:51, n:, pp:- [Journal] - Ian Anderson, Donald A. Preece
**Power-sequence terraces for where n is an odd prime power.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:261, n:1-3, pp:31-58 [Journal] - Ian Anderson, Donald A. Preece
**Narcissistic half-and-half power-sequence terraces for Z**[Citation Graph (0, 0)][DBLP]_{n}with*n=pq*.^{t} Discrete Mathematics, 2004, v:279, n:1-3, pp:33-60 [Journal] - Ian Anderson, Donald A. Preece
**Some power-sequence terraces for Z**[Citation Graph (0, 0)][DBLP]_{pq}with as few segments as possible. Discrete Mathematics, 2005, v:293, n:1-3, pp:29-59 [Journal] - R. A. Bailey, Matthew A. Ollis, Donald A. Preece
**Round-dance neighbour designs from terraces.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:266, n:1-3, pp:69-86 [Journal] - John P. Morgan, Donald A. Preece, David H. Rees
**Nested balanced incomplete block designs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2001, v:231, n:1-3, pp:351-389 [Journal] - Matthew A. Ollis, Donald A. Preece
**Sectionable terraces and the (generalised) Oberwolfach problem.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:266, n:1-3, pp:399-416 [Journal] - Nicholas C. K. Phillips, Donald A. Preece, Walter D. Wallis
**The seven classes of 5×6 triple arrays.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2005, v:293, n:1-3, pp:213-218 [Journal] - Andries E. Brouwer, Peter J. Cameron, Willem H. Haemers, D. A. Preece
**Self-dual, not self-polar.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2006, v:306, n:23, pp:3051-3053 [Journal] - N. C. K. Phillips, D. A. Preece
**Tight single-change covering designs with v = 12, K = 4.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1999, v:197, n:, pp:657-670 [Journal] - Donald A. Preece, B. J. Vowden
**Some series of cyclic balanced hyper-graeco-Latin superimpositions of three Youden squares.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1999, v:197, n:, pp:671-682 [Journal] - David H. Rees, Donald A. Preece
**Perfect Graeco-Latin balanced incomplete block designs (pergolas).**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1999, v:197, n:, pp:691-712 [Journal] - Donald A. Preece
**Some 6 × 11 Youden squares and double Youden rectangles.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1997, v:167, n:, pp:527-541 [Journal] - P. J. Owens, Donald A. Preece
**Aspects of complete sets of 9 × 9 pairwise orthogonal latin squares.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1997, v:167, n:, pp:519-525 [Journal] - Donald A. Preece, B. J. Vowden
**Graeco-Latin squares with embedded balanced superimpositions of Youden squares.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1995, v:138, n:1-3, pp:353-363 [Journal] - Donald A. Preece
**How many 7 × 7 latin squares can be partitioned into Youden squares?**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1995, v:138, n:1-3, pp:343-352 [Journal] - Donald A. Preece
**Double Youden rectangles - an update with examples of size 5x11.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1994, v:125, n:1-3, pp:309-317 [Journal] - D. A. Preece, P. W. Brading, C. W. H. Lam, M. Côté
**Balanced 6 × 6 designs for 4 equally replicated treatments.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1994, v:125, n:1-3, pp:319-327 [Journal] **Some da capo directed power-sequence Z**[Citation Graph (, )][DBLP]_{n+1}terraces with n an odd prime power.**A general approach to constructing power-sequence terraces for Z**[Citation Graph (, )][DBLP]_{n}.**Some**[Citation Graph (, )][DBLP]*I*terraces from*I*power-sequences, n being an odd prime.**Combinatorially fruitful properties of 3.2**[Citation Graph (, )][DBLP]^{-1}and 3.2^{-2}modulo p.**On balanced incomplete-block designs with repeated blocks.**[Citation Graph (, )][DBLP]
Search in 0.005secs, Finished in 0.007secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |