The SCEAS System
| |||||||

## Search the dblp DataBase
Thomas Zaslavsky:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- Thomas Zaslavsky
**Is There a Matroid Theory of Signed Graph Embedding?**[Citation Graph (0, 0)][DBLP] Ars Comb., 1997, v:45, n:, pp:- [Journal] - Patrick Solé, Thomas Zaslavsky
**The Covering Radius of the Cycle Code of a Graph.**[Citation Graph (0, 0)][DBLP] Discrete Applied Mathematics, 1993, v:45, n:1, pp:63-70 [Journal] - Konstantin A. Rybnikov, Thomas Zaslavsky
**Criteria for Balance in Abelian Gain Graphs, with Applications to Piecewise-Linear Geometry.**[Citation Graph (0, 0)][DBLP] Discrete & Computational Geometry, 2005, v:34, n:2, pp:251-268 [Journal] - Thomas Zaslavsky
**Perpendicular Dissections of Space.**[Citation Graph (0, 0)][DBLP] Discrete & Computational Geometry, 2002, v:27, n:3, pp:303-351 [Journal] - Thomas Zaslavsky
**The largest demigenus of a bipartite signed graph.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2001, v:232, n:1-3, pp:189-193 [Journal] - Thomas Zaslavsky
**Supersolvable Frame-matroid and Graphic-lift Lattices.**[Citation Graph (0, 0)][DBLP] Eur. J. Comb., 2001, v:22, n:1, pp:119-133 [Journal] - Thomas Zaslavsky
**Frame Matroids and Biased Graphs.**[Citation Graph (0, 0)][DBLP] Eur. J. Comb., 1994, v:15, n:3, pp:303-307 [Journal] - Matthias Beck, Thomas Zaslavsky
**A Shorter, Simpler, Stronger Proof of the Meshalkin-Hochberg-Hirsch Bounds on Componentwise Antichains.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 2002, v:100, n:1, pp:196-199 [Journal] - Matthias Beck, Thomas Zaslavsky
**A Meshalkin theorem for projective geometries.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 2003, v:102, n:2, pp:433-441 [Journal] - Thomas Zaslavsky
**Biased graphs IV: Geometrical realizations.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2003, v:89, n:2, pp:231-297 [Journal] - Thomas Zaslavsky
**Maximal Dissections of a Simplex.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 1976, v:20, n:2, pp:244-257 [Journal] - Thomas Zaslavsky
**Balanced decompositions of a signed graph.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1987, v:43, n:1, pp:1-13 [Journal] - Thomas Zaslavsky
**The biased graphs whose matroids are binary.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1987, v:42, n:3, pp:337-347 [Journal] - Thomas Zaslavsky
**Biased graphs. I. Bias, balance, and gains.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1989, v:47, n:1, pp:32-52 [Journal] - Thomas Zaslavsky
**Biased graphs. II. The three matroids.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1991, v:51, n:1, pp:46-72 [Journal] - Thomas Zaslavsky
**Biased Graphs .III. Chromatic and Dichromatic Invariants.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1995, v:64, n:1, pp:17-88 [Journal] - Thomas Zaslavsky
**The Signed Chromatic Number of the Projective Plane and Klein Bottle and Antipodal Graph Coloring.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1995, v:63, n:1, pp:136-145 [Journal] - Thomas Zaslavsky
**The Order Upper Bound on Parity Embedding of a Graph.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1996, v:68, n:1, pp:149-160 [Journal] - Thomas Zaslavsky
**The Largest Parity Demigenus of a Simple Graph.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1997, v:70, n:2, pp:325-345 [Journal] - David Forge, Thomas Zaslavsky
**Lattice point counts for the Shi arrangement and other affinographic hyperplane arrangements.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. A, 2007, v:114, n:1, pp:97-109 [Journal] - Matthias Beck, Thomas Zaslavsky
**The number of nowhere-zero flows on graphs and signed graphs.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2006, v:96, n:6, pp:901-918 [Journal] - Ethan D. Bolker, Thomas Zaslavsky
**A simple algorithm that proves half-integrality of bidirected network programming.**[Citation Graph (0, 0)][DBLP] Networks, 2006, v:48, n:1, pp:36-38 [Journal] - Patrick Solé, Thomas Zaslavsky
**A Coding Approach to Signed Graphs.**[Citation Graph (0, 0)][DBLP] SIAM J. Discrete Math., 1994, v:7, n:4, pp:544-553 [Journal] - Konstantin A. Rybnikov, Thomas Zaslavsky
**Cycle and circle tests of balance in gain graphs: Forbidden minors and their groups.**[Citation Graph (0, 0)][DBLP] Journal of Graph Theory, 2006, v:51, n:1, pp:1-21 [Journal] - Thomas Zaslavsky
**Signed graph coloring.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1982, v:39, n:2, pp:215-228 [Journal] - Thomas Zaslavsky
**Chromatic invariants of signed graphs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1982, v:42, n:2-3, pp:287-312 [Journal] - Thomas Zaslavsky
**How colorful the signed graph?**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1984, v:52, n:2-3, pp:279-284 [Journal] - Thomas Zaslavsky
**Signed analogs of bipartite graphs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1998, v:179, n:1-3, pp:205-216 [Journal] - Thomas Zaslavsky
**The projective-planar signed graphs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1993, v:113, n:1-3, pp:223-247 [Journal] - Patrick Solé, Thomas Zaslavsky
**Maximality of the cycle code of a graph.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1994, v:128, n:1-3, pp:401-405 [Journal] - Thomas Zaslavsky
**Biased graphs. VII. Contrabalance and antivoltages.**[Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 2007, v:97, n:6, pp:1019-1040 [Journal] **Totally frustrated states in the chromatic theory of gain graphs.**[Citation Graph (, )][DBLP]**On the division of space by topological hyperplanes.**[Citation Graph (, )][DBLP]
Search in 0.004secs, Finished in 0.006secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |