|
Search the dblp DataBase
Robert E. Schapire:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
- Robert E. Schapire, Yoram Singer
BoosTexter: A Boosting-based System for Text Categorization. [Citation Graph (1, 0)][DBLP] Machine Learning, 2000, v:39, n:2/3, pp:135-168 [Journal]
- Robert E. Schapire
Theoretical Views of Boosting and Applications. [Citation Graph (0, 0)][DBLP] ATL, 1999, pp:13-25 [Conf]
- Peter Stone, Robert E. Schapire, János A. Csirik, Michael L. Littman, David A. McAllester
ATTac-2001: A Learning, Autonomous Bidding Agent. [Citation Graph (0, 0)][DBLP] AMEC, 2002, pp:143-160 [Conf]
- Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, Amit Singhal
Boosting for Document Routing. [Citation Graph (0, 0)][DBLP] CIKM, 2000, pp:70-77 [Conf]
- Miroslav Dudík, Steven J. Phillips, Robert E. Schapire
Performance Guarantees for Regularized Maximum Entropy Density Estimation. [Citation Graph (0, 0)][DBLP] COLT, 2004, pp:472-486 [Conf]
- Miroslav Dudík, Robert E. Schapire
Maximum Entropy Distribution Estimation with Generalized Regularization. [Citation Graph (0, 0)][DBLP] COLT, 2006, pp:123-138 [Conf]
- Michael Collins, Robert E. Schapire, Yoram Singer
Logistic Regression, AdaBoost and Bregman Distances. [Citation Graph (0, 0)][DBLP] COLT, 2000, pp:158-169 [Conf]
- Yoav Freund, Robert E. Schapire
Game Theory, On-Line Prediction and Boosting. [Citation Graph (0, 0)][DBLP] COLT, 1996, pp:325-332 [Conf]
- Yoav Freund, Robert E. Schapire
Large Margin Classification Using the Perceptron Algorithm. [Citation Graph (0, 0)][DBLP] COLT, 1998, pp:209-217 [Conf]
- Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
On the Sample Complexity of Weak Learning. [Citation Graph (0, 0)][DBLP] COLT, 1990, pp:217-231 [Conf]
- Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
Exact Identification of Circuits Using Fixed Points of Amplification Functions (Abstract). [Citation Graph (0, 0)][DBLP] COLT, 1990, pp:388- [Conf]
- David Haussler, Michael J. Kearns, Robert E. Schapire
Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension. [Citation Graph (0, 0)][DBLP] COLT, 1991, pp:61-74 [Conf]
- David P. Helmbold, Robert E. Schapire
Predicting Nearly as Well as the Best Pruning of a Decision Tree. [Citation Graph (0, 0)][DBLP] COLT, 1995, pp:61-68 [Conf]
- David P. Helmbold, Yoram Singer, Robert E. Schapire, Manfred K. Warmuth
A Comparison of New and Old Algorithms for a Mixture Estimation Problem. [Citation Graph (0, 0)][DBLP] COLT, 1995, pp:69-78 [Conf]
- Michael J. Kearns, Robert E. Schapire
Efficient Distribution-Free Learning of Probabilistic Concepts (Abstract). [Citation Graph (0, 0)][DBLP] COLT, 1990, pp:389- [Conf]
- Michael J. Kearns, Robert E. Schapire, Linda Sellie
Toward Efficient Agnostic Learning. [Citation Graph (0, 0)][DBLP] COLT, 1992, pp:341-352 [Conf]
- David A. McAllester, Robert E. Schapire
On the Convergence Rate of Good-Turing Estimators. [Citation Graph (0, 0)][DBLP] COLT, 2000, pp:1-6 [Conf]
- Cynthia Rudin, Corinna Cortes, Mehryar Mohri, Robert E. Schapire
Margin-Based Ranking Meets Boosting in the Middle. [Citation Graph (0, 0)][DBLP] COLT, 2005, pp:63-78 [Conf]
- Cynthia Rudin, Robert E. Schapire, Ingrid Daubechies
Boosting Based on a Smooth Margin. [Citation Graph (0, 0)][DBLP] COLT, 2004, pp:502-517 [Conf]
- Robert E. Schapire
Pattern Languages are not Learnable. [Citation Graph (0, 0)][DBLP] COLT, 1990, pp:122-129 [Conf]
- Robert E. Schapire
Learning Probabilistic Read-Once Formulas on Product Distributions. [Citation Graph (0, 0)][DBLP] COLT, 1991, pp:184-198 [Conf]
- Robert E. Schapire
Drifting Games. [Citation Graph (0, 0)][DBLP] COLT, 1999, pp:114-124 [Conf]
- Robert E. Schapire, Linda Sellie
Learning Sparse Multivariate Polynomials over a Field with Queries and Counterexamples. [Citation Graph (0, 0)][DBLP] COLT, 1993, pp:17-26 [Conf]
- Robert E. Schapire, Yoram Singer
Improved Boosting Algorithms using Confidence-Rated Predictions. [Citation Graph (0, 0)][DBLP] COLT, 1998, pp:80-91 [Conf]
- Robert E. Schapire
Theoretical Views of Boosting. [Citation Graph (0, 0)][DBLP] EuroCOLT, 1999, pp:1-10 [Conf]
- Yoav Freund, Robert E. Schapire
A decision-theoretic generalization of on-line learning and an application to boosting. [Citation Graph (0, 0)][DBLP] EuroCOLT, 1995, pp:23-37 [Conf]
- Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire
Gambling in a Rigged Casino: The Adversarial Multi-Arm Bandit Problem. [Citation Graph (0, 0)][DBLP] FOCS, 1995, pp:322-331 [Conf]
- Yoav Freund, Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire
Efficient Algorithms for Learning to Play Repeated Games Against Computationally Bounded Adversaries. [Citation Graph (0, 0)][DBLP] FOCS, 1995, pp:332-341 [Conf]
- Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
Exact Identification of Circuits Using Fixed Points of Amplification Functions (Extended Abstract) [Citation Graph (0, 0)][DBLP] FOCS, 1990, pp:193-202 [Conf]
- Sally A. Goldman, Ronald L. Rivest, Robert E. Schapire
Learning Binary Relations and Total Orders (Extended Abstract) [Citation Graph (0, 0)][DBLP] FOCS, 1989, pp:46-51 [Conf]
- Michael J. Kearns, Robert E. Schapire
Efficient Distribution-free Learning of Probabilistic Concepts (Extended Abstract) [Citation Graph (0, 0)][DBLP] FOCS, 1990, pp:382-391 [Conf]
- Ronald L. Rivest, Robert E. Schapire
Diversity-Based Inference of Finite Automata (Extended Abstract) [Citation Graph (0, 0)][DBLP] FOCS, 1987, pp:78-87 [Conf]
- Robert E. Schapire
The Strength of Weak Learnability (Extended Abstract) [Citation Graph (0, 0)][DBLP] FOCS, 1989, pp:28-33 [Conf]
- Amit Agarwal, Elad Hazan, Satyen Kale, Robert E. Schapire
Algorithms for portfolio management based on the Newton method. [Citation Graph (0, 0)][DBLP] ICML, 2006, pp:9-16 [Conf]
- Erin L. Allwein, Robert E. Schapire, Yoram Singer
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. [Citation Graph (0, 0)][DBLP] ICML, 2000, pp:9-16 [Conf]
- Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer
An Efficient Boosting Algorithm for Combining Preferences. [Citation Graph (0, 0)][DBLP] ICML, 1998, pp:170-178 [Conf]
- Yoav Freund, Robert E. Schapire
Experiments with a New Boosting Algorithm. [Citation Graph (0, 0)][DBLP] ICML, 1996, pp:148-156 [Conf]
- David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
On-Line Portfolio Selection Using Multiplicative Updates. [Citation Graph (0, 0)][DBLP] ICML, 1996, pp:243-251 [Conf]
- Lev Reyzin, Robert E. Schapire
How boosting the margin can also boost classifier complexity. [Citation Graph (0, 0)][DBLP] ICML, 2006, pp:753-760 [Conf]
- Steven J. Phillips, Miroslav Dudík, Robert E. Schapire
A maximum entropy approach to species distribution modeling. [Citation Graph (0, 0)][DBLP] ICML, 2004, pp:- [Conf]
- Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik
Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. [Citation Graph (0, 0)][DBLP] ICML, 2002, pp:546-553 [Conf]
- Robert E. Schapire
Using output codes to boost multiclass learning problems. [Citation Graph (0, 0)][DBLP] ICML, 1997, pp:313-321 [Conf]
- Robert E. Schapire, Yoav Freund, Peter Barlett, Wee Sun Lee
Boosting the margin: A new explanation for the effectiveness of voting methods. [Citation Graph (0, 0)][DBLP] ICML, 1997, pp:322-330 [Conf]
- Robert E. Schapire, Marie Rochery, Mazin G. Rahim, Narendra Gupta
Incorporating Prior Knowledge into Boosting. [Citation Graph (0, 0)][DBLP] ICML, 2002, pp:538-545 [Conf]
- Robert E. Schapire, Manfred K. Warmuth
On the Worst-Case Analysis of Temporal-Difference Learning Algorithms. [Citation Graph (0, 0)][DBLP] ICML, 1994, pp:266-274 [Conf]
- Robert E. Schapire
A Brief Introduction to Boosting. [Citation Graph (0, 0)][DBLP] IJCAI, 1999, pp:1401-1406 [Conf]
- William W. Cohen, Robert E. Schapire, Yoram Singer
Learning to Order Things. [Citation Graph (0, 0)][DBLP] NIPS, 1997, pp:- [Conf]
- Michael Collins, S. DasGupta, Robert E. Schapire
A Generalization of Principal Components Analysis to the Exponential Family. [Citation Graph (0, 0)][DBLP] NIPS, 2001, pp:617-624 [Conf]
- Harris Drucker, Robert E. Schapire, Patrice Simard
Improving Performance in Neural Networks Using a Boosting Algorithm. [Citation Graph (0, 0)][DBLP] NIPS, 1992, pp:42-49 [Conf]
- Miroslav Dudík, Robert E. Schapire, Steven J. Phillips
Correcting sample selection bias in maximum entropy density estimation. [Citation Graph (0, 0)][DBLP] NIPS, 2005, pp:- [Conf]
- David Haussler, Michael J. Kearns, Manfred Opper, Robert E. Schapire
Estimating Average-Case Learning Curves Using Bayesian, Statistical Physics and VC Dimension Methods. [Citation Graph (0, 0)][DBLP] NIPS, 1991, pp:855-862 [Conf]
- Aurelie C. Lozano, Sanjeev Kulkarni, Robert E. Schapire
Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations. [Citation Graph (0, 0)][DBLP] NIPS, 2005, pp:- [Conf]
- Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
On the Dynamics of Boosting. [Citation Graph (0, 0)][DBLP] NIPS, 2003, pp:- [Conf]
- Ronald L. Rivest, Robert E. Schapire
Inference of Finite Automata Using Homing Sequences. [Citation Graph (0, 0)][DBLP] Machine Learning: From Theory to Applications, 1993, pp:51-73 [Conf]
- David D. Lewis, Robert E. Schapire, James P. Callan, Ron Papka
Training Algorithms for Linear Text Classifiers. [Citation Graph (0, 0)][DBLP] SIGIR, 1996, pp:298-306 [Conf]
- Robert E. Schapire, Yoram Singer, Amit Singhal
Boosting and Rocchio Applied to Text Filtering. [Citation Graph (0, 0)][DBLP] SIGIR, 1998, pp:215-223 [Conf]
- Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E. Schapire, Manfred K. Warmuth
How to use expert advice. [Citation Graph (0, 0)][DBLP] STOC, 1993, pp:382-391 [Conf]
- Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, Linda Sellie
Efficient learning of typical finite automata from random walks. [Citation Graph (0, 0)][DBLP] STOC, 1993, pp:315-324 [Conf]
- Yoav Freund, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
Using and Combining Predictors That Specialize. [Citation Graph (0, 0)][DBLP] STOC, 1997, pp:334-343 [Conf]
- Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, Linda Sellie
On the learnability of discrete distributions. [Citation Graph (0, 0)][DBLP] STOC, 1994, pp:273-282 [Conf]
- Ronald L. Rivest, Robert E. Schapire
Inference of Finite Automata Using Homing Sequences (Extended Abstract) [Citation Graph (0, 0)][DBLP] STOC, 1989, pp:411-420 [Conf]
- Robert E. Schapire
Advances in Boosting. [Citation Graph (0, 0)][DBLP] UAI, 2002, pp:446-452 [Conf]
- Zafer Barutçuoglu, Robert E. Schapire, Olga G. Troyanskaya
Hierarchical multi-label prediction of gene function. [Citation Graph (0, 0)][DBLP] Bioinformatics, 2006, v:22, n:7, pp:830-836 [Journal]
- Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire
Gambling in a rigged casino: The adversarial multi-armed bandit problem [Citation Graph (0, 0)][DBLP] Electronic Colloquium on Computational Complexity (ECCC), 2000, v:7, n:68, pp:- [Journal]
- Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, Linda Sellie
Efficient Learning of Typical Finite Automata from Random Walks. [Citation Graph (0, 0)][DBLP] Inf. Comput., 1997, v:138, n:1, pp:23-48 [Journal]
- Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
On the Sample Complexity of Weakly Learning [Citation Graph (0, 0)][DBLP] Inf. Comput., 1995, v:117, n:2, pp:276-287 [Journal]
- Ronald L. Rivest, Robert E. Schapire
Inference of Finite Automata Using Homing Sequences [Citation Graph (0, 0)][DBLP] Inf. Comput., 1993, v:103, n:2, pp:299-347 [Journal]
- Harris Drucker, Robert E. Schapire, Patrice Simard
Boosting Performance in Neural Networks. [Citation Graph (0, 0)][DBLP] IJPRAI, 1993, v:7, n:4, pp:705-719 [Journal]
- Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, Manfred K. Warmuth
How to use expert advice. [Citation Graph (0, 0)][DBLP] J. ACM, 1997, v:44, n:3, pp:427-485 [Journal]
- Ronald L. Rivest, Robert E. Schapire
Diversity-Based Inference of Finite Automata. [Citation Graph (0, 0)][DBLP] J. ACM, 1994, v:41, n:3, pp:555-589 [Journal]
- William W. Cohen, Robert E. Schapire, Yoram Singer
Learning to Order Things. [Citation Graph (0, 0)][DBLP] J. Artif. Intell. Res. (JAIR), 1999, v:10, n:, pp:243-270 [Journal]
- Peter Stone, Robert E. Schapire, Michael L. Littman, János A. Csirik, David A. McAllester
Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions. [Citation Graph (0, 0)][DBLP] J. Artif. Intell. Res. (JAIR), 2003, v:19, n:, pp:209-242 [Journal]
- Yoav Freund, Robert E. Schapire
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. [Citation Graph (0, 0)][DBLP] J. Comput. Syst. Sci., 1997, v:55, n:1, pp:119-139 [Journal]
- Michael J. Kearns, Robert E. Schapire
Efficient Distribution-Free Learning of Probabilistic Concepts. [Citation Graph (0, 0)][DBLP] J. Comput. Syst. Sci., 1994, v:48, n:3, pp:464-497 [Journal]
- Robert E. Schapire, Linda Sellie
Learning Sparse Multivariate Polynomials over a Field with Queries and Counterexamples. [Citation Graph (0, 0)][DBLP] J. Comput. Syst. Sci., 1996, v:52, n:2, pp:201-213 [Journal]
- Erin L. Allwein, Robert E. Schapire, Yoram Singer
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2000, v:1, n:, pp:113-141 [Journal]
- Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer
An Efficient Boosting Algorithm for Combining Preferences. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2003, v:4, n:, pp:933-969 [Journal]
- Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins. [Citation Graph (0, 0)][DBLP] Journal of Machine Learning Research, 2004, v:5, n:, pp:1557-1595 [Journal]
- Michael Collins, Robert E. Schapire, Yoram Singer
Logistic Regression, AdaBoost and Bregman Distances. [Citation Graph (0, 0)][DBLP] Machine Learning, 2002, v:48, n:1-3, pp:253-285 [Journal]
- Yoav Freund, Robert E. Schapire
Large Margin Classification Using the Perceptron Algorithm. [Citation Graph (0, 0)][DBLP] Machine Learning, 1999, v:37, n:3, pp:277-296 [Journal]
- David Haussler, Michael J. Kearns, Robert E. Schapire
Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension. [Citation Graph (0, 0)][DBLP] Machine Learning, 1994, v:14, n:1, pp:83-113 [Journal]
- David P. Helmbold, Robert E. Schapire
Predicting Nearly As Well As the Best Pruning of a Decision Tree. [Citation Graph (0, 0)][DBLP] Machine Learning, 1997, v:27, n:1, pp:51-68 [Journal]
- David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
A Comparison of New and Old Algorithms for a Mixture Estimation Problem. [Citation Graph (0, 0)][DBLP] Machine Learning, 1997, v:27, n:1, pp:97-119 [Journal]
- Michael J. Kearns, Robert E. Schapire, Linda Sellie
Toward Efficient Agnostic Learning. [Citation Graph (0, 0)][DBLP] Machine Learning, 1994, v:17, n:2-3, pp:115-141 [Journal]
- Robert E. Schapire
Drifting Games. [Citation Graph (0, 0)][DBLP] Machine Learning, 2001, v:43, n:3, pp:265-291 [Journal]
- Robert E. Schapire
The Strength of Weak Learnability. [Citation Graph (0, 0)][DBLP] Machine Learning, 1990, v:5, n:, pp:197-227 [Journal]
- Robert E. Schapire
Learning Probabilistic Read-once Formulas on Product Distributions. [Citation Graph (0, 0)][DBLP] Machine Learning, 1994, v:14, n:1, pp:47-81 [Journal]
- Robert E. Schapire, Yoram Singer
Improved Boosting Algorithms Using Confidence-rated Predictions. [Citation Graph (0, 0)][DBLP] Machine Learning, 1999, v:37, n:3, pp:297-336 [Journal]
- Robert E. Schapire, Manfred K. Warmuth
On the Worst-Case Analysis of Temporal-Difference Learning Algorithms. [Citation Graph (0, 0)][DBLP] Machine Learning, 1996, v:22, n:1-3, pp:95-121 [Journal]
- Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire
The Nonstochastic Multiarmed Bandit Problem. [Citation Graph (0, 0)][DBLP] SIAM J. Comput., 2002, v:32, n:1, pp:48-77 [Journal]
- Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
Exact Identification of Read-Once Formulas Using Fixed Points of Amplification Functions. [Citation Graph (0, 0)][DBLP] SIAM J. Comput., 1993, v:22, n:4, pp:705-726 [Journal]
- Sally A. Goldman, Ronald L. Rivest, Robert E. Schapire
Learning Binary Relations and Total Orders. [Citation Graph (0, 0)][DBLP] SIAM J. Comput., 1993, v:22, n:5, pp:1006-1034 [Journal]
- Gökhan Tür, Dilek Z. Hakkani-Tür, Robert E. Schapire
Combining active and semi-supervised learning for spoken language understanding. [Citation Graph (0, 0)][DBLP] Speech Communication, 2005, v:45, n:2, pp:171-186 [Journal]
- Miroslav Dudík, David M. Blei, Robert E. Schapire
Hierarchical maximum entropy density estimation. [Citation Graph (0, 0)][DBLP] ICML, 2007, pp:249-256 [Conf]
Learning with Continuous Experts Using Drifting Games. [Citation Graph (, )][DBLP]
Apprenticeship learning using linear programming. [Citation Graph (, )][DBLP]
FilterBoost: Regression and Classification on Large Datasets. [Citation Graph (, )][DBLP]
A Game-Theoretic Approach to Apprenticeship Learning. [Citation Graph (, )][DBLP]
From Optimization to Regret Minimization and Back Again. [Citation Graph (, )][DBLP]
A contextual-bandit approach to personalized news article recommendation. [Citation Graph (, )][DBLP]
Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields. [Citation Graph (, )][DBLP]
Efficient Multiclass Implementations of L1-Regularized Maximum Entropy [Citation Graph (, )][DBLP]
An Optimal High Probability Algorithm for the Contextual Bandit Problem [Citation Graph (, )][DBLP]
A Contextual-Bandit Approach to Personalized News Article Recommendation [Citation Graph (, )][DBLP]
Search in 0.041secs, Finished in 0.044secs
|