The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Robert E. Schapire: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Robert E. Schapire, Yoram Singer
    BoosTexter: A Boosting-based System for Text Categorization. [Citation Graph (1, 0)][DBLP]
    Machine Learning, 2000, v:39, n:2/3, pp:135-168 [Journal]
  2. Robert E. Schapire
    Theoretical Views of Boosting and Applications. [Citation Graph (0, 0)][DBLP]
    ATL, 1999, pp:13-25 [Conf]
  3. Peter Stone, Robert E. Schapire, János A. Csirik, Michael L. Littman, David A. McAllester
    ATTac-2001: A Learning, Autonomous Bidding Agent. [Citation Graph (0, 0)][DBLP]
    AMEC, 2002, pp:143-160 [Conf]
  4. Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, Amit Singhal
    Boosting for Document Routing. [Citation Graph (0, 0)][DBLP]
    CIKM, 2000, pp:70-77 [Conf]
  5. Miroslav Dudík, Steven J. Phillips, Robert E. Schapire
    Performance Guarantees for Regularized Maximum Entropy Density Estimation. [Citation Graph (0, 0)][DBLP]
    COLT, 2004, pp:472-486 [Conf]
  6. Miroslav Dudík, Robert E. Schapire
    Maximum Entropy Distribution Estimation with Generalized Regularization. [Citation Graph (0, 0)][DBLP]
    COLT, 2006, pp:123-138 [Conf]
  7. Michael Collins, Robert E. Schapire, Yoram Singer
    Logistic Regression, AdaBoost and Bregman Distances. [Citation Graph (0, 0)][DBLP]
    COLT, 2000, pp:158-169 [Conf]
  8. Yoav Freund, Robert E. Schapire
    Game Theory, On-Line Prediction and Boosting. [Citation Graph (0, 0)][DBLP]
    COLT, 1996, pp:325-332 [Conf]
  9. Yoav Freund, Robert E. Schapire
    Large Margin Classification Using the Perceptron Algorithm. [Citation Graph (0, 0)][DBLP]
    COLT, 1998, pp:209-217 [Conf]
  10. Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
    On the Sample Complexity of Weak Learning. [Citation Graph (0, 0)][DBLP]
    COLT, 1990, pp:217-231 [Conf]
  11. Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
    Exact Identification of Circuits Using Fixed Points of Amplification Functions (Abstract). [Citation Graph (0, 0)][DBLP]
    COLT, 1990, pp:388- [Conf]
  12. David Haussler, Michael J. Kearns, Robert E. Schapire
    Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension. [Citation Graph (0, 0)][DBLP]
    COLT, 1991, pp:61-74 [Conf]
  13. David P. Helmbold, Robert E. Schapire
    Predicting Nearly as Well as the Best Pruning of a Decision Tree. [Citation Graph (0, 0)][DBLP]
    COLT, 1995, pp:61-68 [Conf]
  14. David P. Helmbold, Yoram Singer, Robert E. Schapire, Manfred K. Warmuth
    A Comparison of New and Old Algorithms for a Mixture Estimation Problem. [Citation Graph (0, 0)][DBLP]
    COLT, 1995, pp:69-78 [Conf]
  15. Michael J. Kearns, Robert E. Schapire
    Efficient Distribution-Free Learning of Probabilistic Concepts (Abstract). [Citation Graph (0, 0)][DBLP]
    COLT, 1990, pp:389- [Conf]
  16. Michael J. Kearns, Robert E. Schapire, Linda Sellie
    Toward Efficient Agnostic Learning. [Citation Graph (0, 0)][DBLP]
    COLT, 1992, pp:341-352 [Conf]
  17. David A. McAllester, Robert E. Schapire
    On the Convergence Rate of Good-Turing Estimators. [Citation Graph (0, 0)][DBLP]
    COLT, 2000, pp:1-6 [Conf]
  18. Cynthia Rudin, Corinna Cortes, Mehryar Mohri, Robert E. Schapire
    Margin-Based Ranking Meets Boosting in the Middle. [Citation Graph (0, 0)][DBLP]
    COLT, 2005, pp:63-78 [Conf]
  19. Cynthia Rudin, Robert E. Schapire, Ingrid Daubechies
    Boosting Based on a Smooth Margin. [Citation Graph (0, 0)][DBLP]
    COLT, 2004, pp:502-517 [Conf]
  20. Robert E. Schapire
    Pattern Languages are not Learnable. [Citation Graph (0, 0)][DBLP]
    COLT, 1990, pp:122-129 [Conf]
  21. Robert E. Schapire
    Learning Probabilistic Read-Once Formulas on Product Distributions. [Citation Graph (0, 0)][DBLP]
    COLT, 1991, pp:184-198 [Conf]
  22. Robert E. Schapire
    Drifting Games. [Citation Graph (0, 0)][DBLP]
    COLT, 1999, pp:114-124 [Conf]
  23. Robert E. Schapire, Linda Sellie
    Learning Sparse Multivariate Polynomials over a Field with Queries and Counterexamples. [Citation Graph (0, 0)][DBLP]
    COLT, 1993, pp:17-26 [Conf]
  24. Robert E. Schapire, Yoram Singer
    Improved Boosting Algorithms using Confidence-Rated Predictions. [Citation Graph (0, 0)][DBLP]
    COLT, 1998, pp:80-91 [Conf]
  25. Robert E. Schapire
    Theoretical Views of Boosting. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1999, pp:1-10 [Conf]
  26. Yoav Freund, Robert E. Schapire
    A decision-theoretic generalization of on-line learning and an application to boosting. [Citation Graph (0, 0)][DBLP]
    EuroCOLT, 1995, pp:23-37 [Conf]
  27. Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire
    Gambling in a Rigged Casino: The Adversarial Multi-Arm Bandit Problem. [Citation Graph (0, 0)][DBLP]
    FOCS, 1995, pp:322-331 [Conf]
  28. Yoav Freund, Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire
    Efficient Algorithms for Learning to Play Repeated Games Against Computationally Bounded Adversaries. [Citation Graph (0, 0)][DBLP]
    FOCS, 1995, pp:332-341 [Conf]
  29. Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
    Exact Identification of Circuits Using Fixed Points of Amplification Functions (Extended Abstract) [Citation Graph (0, 0)][DBLP]
    FOCS, 1990, pp:193-202 [Conf]
  30. Sally A. Goldman, Ronald L. Rivest, Robert E. Schapire
    Learning Binary Relations and Total Orders (Extended Abstract) [Citation Graph (0, 0)][DBLP]
    FOCS, 1989, pp:46-51 [Conf]
  31. Michael J. Kearns, Robert E. Schapire
    Efficient Distribution-free Learning of Probabilistic Concepts (Extended Abstract) [Citation Graph (0, 0)][DBLP]
    FOCS, 1990, pp:382-391 [Conf]
  32. Ronald L. Rivest, Robert E. Schapire
    Diversity-Based Inference of Finite Automata (Extended Abstract) [Citation Graph (0, 0)][DBLP]
    FOCS, 1987, pp:78-87 [Conf]
  33. Robert E. Schapire
    The Strength of Weak Learnability (Extended Abstract) [Citation Graph (0, 0)][DBLP]
    FOCS, 1989, pp:28-33 [Conf]
  34. Amit Agarwal, Elad Hazan, Satyen Kale, Robert E. Schapire
    Algorithms for portfolio management based on the Newton method. [Citation Graph (0, 0)][DBLP]
    ICML, 2006, pp:9-16 [Conf]
  35. Erin L. Allwein, Robert E. Schapire, Yoram Singer
    Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. [Citation Graph (0, 0)][DBLP]
    ICML, 2000, pp:9-16 [Conf]
  36. Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer
    An Efficient Boosting Algorithm for Combining Preferences. [Citation Graph (0, 0)][DBLP]
    ICML, 1998, pp:170-178 [Conf]
  37. Yoav Freund, Robert E. Schapire
    Experiments with a New Boosting Algorithm. [Citation Graph (0, 0)][DBLP]
    ICML, 1996, pp:148-156 [Conf]
  38. David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
    On-Line Portfolio Selection Using Multiplicative Updates. [Citation Graph (0, 0)][DBLP]
    ICML, 1996, pp:243-251 [Conf]
  39. Lev Reyzin, Robert E. Schapire
    How boosting the margin can also boost classifier complexity. [Citation Graph (0, 0)][DBLP]
    ICML, 2006, pp:753-760 [Conf]
  40. Steven J. Phillips, Miroslav Dudík, Robert E. Schapire
    A maximum entropy approach to species distribution modeling. [Citation Graph (0, 0)][DBLP]
    ICML, 2004, pp:- [Conf]
  41. Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik
    Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:546-553 [Conf]
  42. Robert E. Schapire
    Using output codes to boost multiclass learning problems. [Citation Graph (0, 0)][DBLP]
    ICML, 1997, pp:313-321 [Conf]
  43. Robert E. Schapire, Yoav Freund, Peter Barlett, Wee Sun Lee
    Boosting the margin: A new explanation for the effectiveness of voting methods. [Citation Graph (0, 0)][DBLP]
    ICML, 1997, pp:322-330 [Conf]
  44. Robert E. Schapire, Marie Rochery, Mazin G. Rahim, Narendra Gupta
    Incorporating Prior Knowledge into Boosting. [Citation Graph (0, 0)][DBLP]
    ICML, 2002, pp:538-545 [Conf]
  45. Robert E. Schapire, Manfred K. Warmuth
    On the Worst-Case Analysis of Temporal-Difference Learning Algorithms. [Citation Graph (0, 0)][DBLP]
    ICML, 1994, pp:266-274 [Conf]
  46. Robert E. Schapire
    A Brief Introduction to Boosting. [Citation Graph (0, 0)][DBLP]
    IJCAI, 1999, pp:1401-1406 [Conf]
  47. William W. Cohen, Robert E. Schapire, Yoram Singer
    Learning to Order Things. [Citation Graph (0, 0)][DBLP]
    NIPS, 1997, pp:- [Conf]
  48. Michael Collins, S. DasGupta, Robert E. Schapire
    A Generalization of Principal Components Analysis to the Exponential Family. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:617-624 [Conf]
  49. Harris Drucker, Robert E. Schapire, Patrice Simard
    Improving Performance in Neural Networks Using a Boosting Algorithm. [Citation Graph (0, 0)][DBLP]
    NIPS, 1992, pp:42-49 [Conf]
  50. Miroslav Dudík, Robert E. Schapire, Steven J. Phillips
    Correcting sample selection bias in maximum entropy density estimation. [Citation Graph (0, 0)][DBLP]
    NIPS, 2005, pp:- [Conf]
  51. David Haussler, Michael J. Kearns, Manfred Opper, Robert E. Schapire
    Estimating Average-Case Learning Curves Using Bayesian, Statistical Physics and VC Dimension Methods. [Citation Graph (0, 0)][DBLP]
    NIPS, 1991, pp:855-862 [Conf]
  52. Aurelie C. Lozano, Sanjeev Kulkarni, Robert E. Schapire
    Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations. [Citation Graph (0, 0)][DBLP]
    NIPS, 2005, pp:- [Conf]
  53. Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
    On the Dynamics of Boosting. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  54. Ronald L. Rivest, Robert E. Schapire
    Inference of Finite Automata Using Homing Sequences. [Citation Graph (0, 0)][DBLP]
    Machine Learning: From Theory to Applications, 1993, pp:51-73 [Conf]
  55. David D. Lewis, Robert E. Schapire, James P. Callan, Ron Papka
    Training Algorithms for Linear Text Classifiers. [Citation Graph (0, 0)][DBLP]
    SIGIR, 1996, pp:298-306 [Conf]
  56. Robert E. Schapire, Yoram Singer, Amit Singhal
    Boosting and Rocchio Applied to Text Filtering. [Citation Graph (0, 0)][DBLP]
    SIGIR, 1998, pp:215-223 [Conf]
  57. Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E. Schapire, Manfred K. Warmuth
    How to use expert advice. [Citation Graph (0, 0)][DBLP]
    STOC, 1993, pp:382-391 [Conf]
  58. Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, Linda Sellie
    Efficient learning of typical finite automata from random walks. [Citation Graph (0, 0)][DBLP]
    STOC, 1993, pp:315-324 [Conf]
  59. Yoav Freund, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
    Using and Combining Predictors That Specialize. [Citation Graph (0, 0)][DBLP]
    STOC, 1997, pp:334-343 [Conf]
  60. Michael J. Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, Linda Sellie
    On the learnability of discrete distributions. [Citation Graph (0, 0)][DBLP]
    STOC, 1994, pp:273-282 [Conf]
  61. Ronald L. Rivest, Robert E. Schapire
    Inference of Finite Automata Using Homing Sequences (Extended Abstract) [Citation Graph (0, 0)][DBLP]
    STOC, 1989, pp:411-420 [Conf]
  62. Robert E. Schapire
    Advances in Boosting. [Citation Graph (0, 0)][DBLP]
    UAI, 2002, pp:446-452 [Conf]
  63. Zafer Barutçuoglu, Robert E. Schapire, Olga G. Troyanskaya
    Hierarchical multi-label prediction of gene function. [Citation Graph (0, 0)][DBLP]
    Bioinformatics, 2006, v:22, n:7, pp:830-836 [Journal]
  64. Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire
    Gambling in a rigged casino: The adversarial multi-armed bandit problem [Citation Graph (0, 0)][DBLP]
    Electronic Colloquium on Computational Complexity (ECCC), 2000, v:7, n:68, pp:- [Journal]
  65. Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, Linda Sellie
    Efficient Learning of Typical Finite Automata from Random Walks. [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 1997, v:138, n:1, pp:23-48 [Journal]
  66. Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
    On the Sample Complexity of Weakly Learning [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 1995, v:117, n:2, pp:276-287 [Journal]
  67. Ronald L. Rivest, Robert E. Schapire
    Inference of Finite Automata Using Homing Sequences [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 1993, v:103, n:2, pp:299-347 [Journal]
  68. Harris Drucker, Robert E. Schapire, Patrice Simard
    Boosting Performance in Neural Networks. [Citation Graph (0, 0)][DBLP]
    IJPRAI, 1993, v:7, n:4, pp:705-719 [Journal]
  69. Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, Manfred K. Warmuth
    How to use expert advice. [Citation Graph (0, 0)][DBLP]
    J. ACM, 1997, v:44, n:3, pp:427-485 [Journal]
  70. Ronald L. Rivest, Robert E. Schapire
    Diversity-Based Inference of Finite Automata. [Citation Graph (0, 0)][DBLP]
    J. ACM, 1994, v:41, n:3, pp:555-589 [Journal]
  71. William W. Cohen, Robert E. Schapire, Yoram Singer
    Learning to Order Things. [Citation Graph (0, 0)][DBLP]
    J. Artif. Intell. Res. (JAIR), 1999, v:10, n:, pp:243-270 [Journal]
  72. Peter Stone, Robert E. Schapire, Michael L. Littman, János A. Csirik, David A. McAllester
    Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions. [Citation Graph (0, 0)][DBLP]
    J. Artif. Intell. Res. (JAIR), 2003, v:19, n:, pp:209-242 [Journal]
  73. Yoav Freund, Robert E. Schapire
    A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 1997, v:55, n:1, pp:119-139 [Journal]
  74. Michael J. Kearns, Robert E. Schapire
    Efficient Distribution-Free Learning of Probabilistic Concepts. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 1994, v:48, n:3, pp:464-497 [Journal]
  75. Robert E. Schapire, Linda Sellie
    Learning Sparse Multivariate Polynomials over a Field with Queries and Counterexamples. [Citation Graph (0, 0)][DBLP]
    J. Comput. Syst. Sci., 1996, v:52, n:2, pp:201-213 [Journal]
  76. Erin L. Allwein, Robert E. Schapire, Yoram Singer
    Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2000, v:1, n:, pp:113-141 [Journal]
  77. Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer
    An Efficient Boosting Algorithm for Combining Preferences. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2003, v:4, n:, pp:933-969 [Journal]
  78. Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
    The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2004, v:5, n:, pp:1557-1595 [Journal]
  79. Michael Collins, Robert E. Schapire, Yoram Singer
    Logistic Regression, AdaBoost and Bregman Distances. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2002, v:48, n:1-3, pp:253-285 [Journal]
  80. Yoav Freund, Robert E. Schapire
    Large Margin Classification Using the Perceptron Algorithm. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1999, v:37, n:3, pp:277-296 [Journal]
  81. David Haussler, Michael J. Kearns, Robert E. Schapire
    Bounds on the Sample Complexity of Bayesian Learning Using Information Theory and the VC Dimension. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1994, v:14, n:1, pp:83-113 [Journal]
  82. David P. Helmbold, Robert E. Schapire
    Predicting Nearly As Well As the Best Pruning of a Decision Tree. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1997, v:27, n:1, pp:51-68 [Journal]
  83. David P. Helmbold, Robert E. Schapire, Yoram Singer, Manfred K. Warmuth
    A Comparison of New and Old Algorithms for a Mixture Estimation Problem. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1997, v:27, n:1, pp:97-119 [Journal]
  84. Michael J. Kearns, Robert E. Schapire, Linda Sellie
    Toward Efficient Agnostic Learning. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1994, v:17, n:2-3, pp:115-141 [Journal]
  85. Robert E. Schapire
    Drifting Games. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2001, v:43, n:3, pp:265-291 [Journal]
  86. Robert E. Schapire
    The Strength of Weak Learnability. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1990, v:5, n:, pp:197-227 [Journal]
  87. Robert E. Schapire
    Learning Probabilistic Read-once Formulas on Product Distributions. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1994, v:14, n:1, pp:47-81 [Journal]
  88. Robert E. Schapire, Yoram Singer
    Improved Boosting Algorithms Using Confidence-rated Predictions. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1999, v:37, n:3, pp:297-336 [Journal]
  89. Robert E. Schapire, Manfred K. Warmuth
    On the Worst-Case Analysis of Temporal-Difference Learning Algorithms. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1996, v:22, n:1-3, pp:95-121 [Journal]
  90. Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert E. Schapire
    The Nonstochastic Multiarmed Bandit Problem. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 2002, v:32, n:1, pp:48-77 [Journal]
  91. Sally A. Goldman, Michael J. Kearns, Robert E. Schapire
    Exact Identification of Read-Once Formulas Using Fixed Points of Amplification Functions. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 1993, v:22, n:4, pp:705-726 [Journal]
  92. Sally A. Goldman, Ronald L. Rivest, Robert E. Schapire
    Learning Binary Relations and Total Orders. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 1993, v:22, n:5, pp:1006-1034 [Journal]
  93. Gökhan Tür, Dilek Z. Hakkani-Tür, Robert E. Schapire
    Combining active and semi-supervised learning for spoken language understanding. [Citation Graph (0, 0)][DBLP]
    Speech Communication, 2005, v:45, n:2, pp:171-186 [Journal]
  94. Miroslav Dudík, David M. Blei, Robert E. Schapire
    Hierarchical maximum entropy density estimation. [Citation Graph (0, 0)][DBLP]
    ICML, 2007, pp:249-256 [Conf]

  95. Learning with Continuous Experts Using Drifting Games. [Citation Graph (, )][DBLP]


  96. Apprenticeship learning using linear programming. [Citation Graph (, )][DBLP]


  97. FilterBoost: Regression and Classification on Large Datasets. [Citation Graph (, )][DBLP]


  98. A Game-Theoretic Approach to Apprenticeship Learning. [Citation Graph (, )][DBLP]


  99. From Optimization to Regret Minimization and Back Again. [Citation Graph (, )][DBLP]


  100. A contextual-bandit approach to personalized news article recommendation. [Citation Graph (, )][DBLP]


  101. Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields. [Citation Graph (, )][DBLP]


  102. Efficient Multiclass Implementations of L1-Regularized Maximum Entropy [Citation Graph (, )][DBLP]


  103. An Optimal High Probability Algorithm for the Contextual Bandit Problem [Citation Graph (, )][DBLP]


  104. A Contextual-Bandit Approach to Personalized News Article Recommendation [Citation Graph (, )][DBLP]


Search in 0.007secs, Finished in 0.012secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002