The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Yasubumi Sakakibara: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Yuji Takada, Kunihiko Hiraishi, Yasubumi Sakakibara
    Exact Learning of Semilinear Sets. [Citation Graph (0, 0)][DBLP]
    ALT, 1990, pp:314-324 [Conf]
  2. Yasubumi Sakakibara
    Occam Algorithms for Learning From Noisy Examples. [Citation Graph (0, 0)][DBLP]
    ALT, 1990, pp:193-208 [Conf]
  3. Yasubumi Sakakibara
    Grammatical Inference: An Old and New Paradigm. [Citation Graph (0, 0)][DBLP]
    ALT, 1995, pp:1-24 [Conf]
  4. Yasubumi Sakakibara, Klaus P. Jantke, Steffen Lange
    Learning Languages by Collecting Cases and Tuning Parameters. [Citation Graph (0, 0)][DBLP]
    AII/ALT, 1994, pp:532-546 [Conf]
  5. Yuji Kawada, Yasubumi Sakakibara
    Discriminative Detection of Cis-Acting Regulatory Variation From Location Data. [Citation Graph (0, 0)][DBLP]
    APBC, 2006, pp:89-98 [Conf]
  6. Satoshi Kobayashi, Takashi Yokomori, Yasubumi Sakakibara
    An Algorithm for Testing Structure Freeness of Biomolecular Sequences. [Citation Graph (0, 0)][DBLP]
    Aspects of Molecular Computing, 2004, pp:266-277 [Conf]
  7. Takashi Yokomori, Yasubumi Sakakibara, Satoshi Kobayashi
    A Magic Pot : Self-assembly Computation Revisited. [Citation Graph (0, 0)][DBLP]
    Formal and Natural Computing, 2002, pp:418-430 [Conf]
  8. Yasubumi Sakakibara
    Learning Context-Free Grammars from Structural Data in Polynomial Time. [Citation Graph (0, 0)][DBLP]
    COLT, 1988, pp:330-344 [Conf]
  9. Yasubumi Sakakibara, Rani Siromoney
    A Noise Model on Learning Sets of Strings. [Citation Graph (0, 0)][DBLP]
    COLT, 1992, pp:295-302 [Conf]
  10. Yasubumi Sakakibara, Michael Brown, Richard Hughey, I. Saira Mian, Kimmen Sjölander, Rebecca C. Underwood, David Haussler
    Recent Methods for RNA Modeling Using Stochastic Context-Free Grammars. [Citation Graph (0, 0)][DBLP]
    CPM, 1994, pp:289-306 [Conf]
  11. Yuji Kawada, Yasubumi Sakakibara
    Discriminative Discovery of Transcription Factor Binding Sites from Location Data. [Citation Graph (0, 0)][DBLP]
    CSB, 2005, pp:86-89 [Conf]
  12. Hiroshi Matsui, Kengo Sato, Yasubumi Sakakibara
    Pair Stochastic Tree Adjoining Grammars for Aligning and Predicting Pseudoknot RNA Structures. [Citation Graph (0, 0)][DBLP]
    CSB, 2004, pp:290-299 [Conf]
  13. Yasubumi Sakakibara
    Solving Computational Learning Problems of Boolean Formulae on DNA Computers. [Citation Graph (0, 0)][DBLP]
    DNA Computing, 2000, pp:220-230 [Conf]
  14. Yasubumi Sakakibara
    Population Computation and Majority Inference in Test Tube. [Citation Graph (0, 0)][DBLP]
    DNA, 2001, pp:82-91 [Conf]
  15. Yasubumi Sakakibara, Takahiro Hohsaka
    In Vitro Translation-Based Computations. [Citation Graph (0, 0)][DBLP]
    DNA, 2003, pp:197-202 [Conf]
  16. Yasubumi Sakakibara, Hiroshi Imai
    A DNA-based Computational Model Using a Specific Type of Restriction Enzyme. [Citation Graph (0, 0)][DBLP]
    DNA, 2002, pp:315-325 [Conf]
  17. Junna Kuramochi, Yasubumi Sakakibara
    Intensive In Vitro Experiments of Implementing and Executing Finite Automata in Test Tube. [Citation Graph (0, 0)][DBLP]
    DNA, 2005, pp:193-202 [Conf]
  18. Hirotaka Nakagawa, Kensaku Sakamoto, Yasubumi Sakakibara
    Development of an In Vivo Computer Based on Escherichia coli. [Citation Graph (0, 0)][DBLP]
    DNA, 2005, pp:203-212 [Conf]
  19. Kengo Sato, Yasubumi Sakakibara
    RNA secondary structural alignment with conditional random fields. [Citation Graph (0, 0)][DBLP]
    ECCB/JBI, 2005, pp:242- [Conf]
  20. Yasubumi Sakakibara
    An Efficient Learning of Context-Free Grammars for Bottom-Up Parsers. [Citation Graph (0, 0)][DBLP]
    FGCS, 1988, pp:447-454 [Conf]
  21. Yasubumi Sakakibara, Michael Brown, Rebecca C. Underwood, I. Saira Mian, David Haussler
    Stochastic Context-Free Grammars for Modeling RN. [Citation Graph (0, 0)][DBLP]
    HICSS (5), 1994, pp:284-294 [Conf]
  22. Mostefa Golea, Masahiro Matsuoka, Yasubumi Sakakibara
    Stochastic simple recurrent neural networks. [Citation Graph (0, 0)][DBLP]
    ICGI, 1996, pp:262-273 [Conf]
  23. Yasubumi Sakakibara, Hidenori Muramatsu
    Learning Context-Free Grammars from Partially Structured Examples. [Citation Graph (0, 0)][DBLP]
    ICGI, 2000, pp:229-240 [Conf]
  24. Yasubumi Sakakibara, Mitsuhiro Kondo
    GA-based Learning of Context-Free Grammars using Tabular Representations. [Citation Graph (0, 0)][DBLP]
    ICML, 1999, pp:354-360 [Conf]
  25. Yasubumi Sakakibara
    Pair hidden Markov models on tree structures. [Citation Graph (0, 0)][DBLP]
    ISMB (Supplement of Bioinformatics), 2003, pp:232-240 [Conf]
  26. Yasubumi Sakakibara
    Programming in Modal Logic: An Extension of PROLOG based on Modal Logic. [Citation Graph (0, 0)][DBLP]
    LP, 1986, pp:81-91 [Conf]
  27. Yasubumi Sakakibara, Kiyoshi Asai, Kengo Sato
    Stem Kernels for RNA Sequence Analyses. [Citation Graph (0, 0)][DBLP]
    BIRD, 2007, pp:278-291 [Conf]
  28. Hiroshi Matsui, Kengo Sato, Yasubumi Sakakibara
    Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures. [Citation Graph (0, 0)][DBLP]
    Bioinformatics, 2005, v:21, n:11, pp:2611-2617 [Journal]
  29. Yasubumi Sakakibara
    Development of a Bacteria Computer: From in silico Finite Automata to in virto AND in vivo. [Citation Graph (0, 0)][DBLP]
    Bulletin of the EATCS, 2005, v:87, n:, pp:165-178 [Journal]
  30. Yasubumi Sakakibara
    Efficient Learning of Context-Free Grammars from Positive Structural Examples [Citation Graph (0, 0)][DBLP]
    Inf. Comput., 1992, v:97, n:1, pp:23-60 [Journal]
  31. Yasubumi Sakakibara
    On Learning from Queries and Counterexamples in the Presence of Noise. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 1991, v:37, n:5, pp:279-284 [Journal]
  32. Yasubumi Sakakibara, Hiroshi Imai
    A DNA-Based Computational Model Using a Specific Type of Restriction Enzymes. [Citation Graph (0, 0)][DBLP]
    Journal of Automata, Languages and Combinatorics, 2004, v:9, n:1, pp:111-119 [Journal]
  33. Yasubumi Sakakibara
    Noise-Tolerant Occam Algorithms and Their Applications to Learning Decision Trees. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1993, v:11, n:, pp:37-62 [Journal]
  34. Georgios Paliouras, Yasubumi Sakakibara
    Guest editorial to the special issue on grammatical inference. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2007, v:66, n:1, pp:3-5 [Journal]
  35. Yasubumi Sakakibara
    DNA-based algorithms for learning Boolean formulae. [Citation Graph (0, 0)][DBLP]
    Natural Computing, 2003, v:2, n:2, pp:153-171 [Journal]
  36. Christoph Globig, Klaus P. Jantke, Steffen Lange, Yasubumi Sakakibara
    On Case Based Learnability of Language. [Citation Graph (0, 0)][DBLP]
    New Generation Comput., 1997, v:15, n:1, pp:39-83 [Journal]
  37. Yasubumi Sakakibara
    Grammatical Inference in Bioinformatics. [Citation Graph (0, 0)][DBLP]
    IEEE Trans. Pattern Anal. Mach. Intell., 2005, v:27, n:7, pp:1051-1062 [Journal]
  38. Yasubumi Sakakibara
    Learning context-free grammars using tabular representations. [Citation Graph (0, 0)][DBLP]
    Pattern Recognition, 2005, v:38, n:9, pp:1372-1383 [Journal]
  39. Yasubumi Sakakibara, Satoshi Kobayashi
    Sticker systems with complex structures. [Citation Graph (0, 0)][DBLP]
    Soft Comput., 2001, v:5, n:2, pp:114-120 [Journal]
  40. Satoshi Kobayashi, Yasubumi Sakakibara
    Multiple splicing systems and the universal computability. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2001, v:264, n:1, pp:3-23 [Journal]
  41. Yasubumi Sakakibara
    Learning Context-Free Grammars from Structural Data in Polynomial Time. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 1990, v:76, n:2-3, pp:223-242 [Journal]
  42. Yasubumi Sakakibara
    Recent Advances of Grammatical Inference. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 1997, v:185, n:1, pp:15-45 [Journal]
  43. Yasubumi Sakakibara, Claudio Ferretti
    Splicing on Tree-Like Structures. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 1999, v:210, n:2, pp:227-243 [Journal]

  44. Development of a Bacteria Computer: From in silico Finite Automata to in vitro and in vivo. [Citation Graph (, )][DBLP]


  45. Operon Structure Optimization by Random Self-assembly. [Citation Graph (, )][DBLP]


  46. A Non-parametric Bayesian Approach for Predicting RNA Secondary Structures. [Citation Graph (, )][DBLP]


  47. Statistical prediction of protein-chemical interactions based on chemical structure and mass spectrometry data. [Citation Graph (, )][DBLP]


  48. Accurate identification of orthologous segments among multiple genomes. [Citation Graph (, )][DBLP]


  49. Accurate identification of orthologous segments among multiple genomes. [Citation Graph (, )][DBLP]


  50. Directed acyclic graph kernels for structural RNA analysis. [Citation Graph (, )][DBLP]


Search in 0.591secs, Finished in 0.594secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002