Search the dblp DataBase
Gunnar Rätsch :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Gunnar Rätsch Solving Semi-infinite Linear Programs Using Boosting-Like Methods. [Citation Graph (0, 0)][DBLP ] ALT, 2006, pp:10-11 [Conf ] Gunnar Rätsch , Manfred K. Warmuth Maximizing the Margin with Boosting. [Citation Graph (0, 0)][DBLP ] COLT, 2002, pp:334-350 [Conf ] Gunnar Rätsch , Manfred K. Warmuth , Sebastian Mika , Takashi Onoda , Steven Lemm , Klaus-Robert Müller Barrier Boosting. [Citation Graph (0, 0)][DBLP ] COLT, 2000, pp:170-179 [Conf ] Gunnar Rätsch The Solution of Semi-Infinite Linear Programs Using Boosting-Like Methods. [Citation Graph (0, 0)][DBLP ] Discovery Science, 2006, pp:15- [Conf ] HyunJung Shin , N. Jeremy Hill , Gunnar Rätsch Graph Based Semi-supervised Learning with Sharper Edges. [Citation Graph (0, 0)][DBLP ] ECML, 2006, pp:401-412 [Conf ] Alexander Zien , Gunnar Rätsch , Sebastian Mika , Bernhard Schölkopf , Christian Lemmen , Alex J. Smola , Thomas Lengauer , Klaus-Robert Müller Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites. [Citation Graph (0, 0)][DBLP ] German Conference on Bioinformatics, 1999, pp:37-43 [Conf ] Klaus-Robert Müller , Alex J. Smola , Gunnar Rätsch , Bernhard Schölkopf , Jens Kohlmorgen , Vladimir Vapnik Predicting Time Series with Support Vector Machines. [Citation Graph (0, 0)][DBLP ] ICANN, 1997, pp:999-1004 [Conf ] Sören Sonnenburg , Gunnar Rätsch , Arun K. Jagota , Klaus-Robert Müller New Methods for Splice Site Recognition. [Citation Graph (0, 0)][DBLP ] ICANN, 2002, pp:329-336 [Conf ] Koji Tsuda , Gunnar Rätsch , Sebastian Mika , Klaus-Robert Müller Learning to Predict the Leave-One-Out Error of Kernel Based Classifiers. [Citation Graph (0, 0)][DBLP ] ICANN, 2001, pp:331-338 [Conf ] Sören Sonnenburg , Gunnar Rätsch , Bernhard Schölkopf Large scale genomic sequence SVM classifiers. [Citation Graph (0, 0)][DBLP ] ICML, 2005, pp:848-855 [Conf ] Manfred K. Warmuth , Jun Liao , Gunnar Rätsch Totally corrective boosting algorithms that maximize the margin. [Citation Graph (0, 0)][DBLP ] ICML, 2006, pp:1001-1008 [Conf ] Gunnar Rätsch , Takashi Onoda , Klaus-Robert Müller An Improvement of AdaBoost to Avoid Overfitting. [Citation Graph (0, 0)][DBLP ] ICONIP, 1998, pp:506-509 [Conf ] Gunnar Rätsch , Sören Sonnenburg , Bernhard Schölkopf RASE: recognition of alternatively spliced exons in C.elegans . [Citation Graph (0, 0)][DBLP ] ISMB (Supplement of Bioinformatics), 2005, pp:369-377 [Conf ] Sören Sonnenburg , Alexander Zien , Gunnar Rätsch ARTS: accurate recognition of transcription starts in human. [Citation Graph (0, 0)][DBLP ] ISMB (Supplement of Bioinformatics), 2006, pp:472-480 [Conf ] Ron Meir , Gunnar Rätsch An Introduction to Boosting and Leveraging. [Citation Graph (0, 0)][DBLP ] Machine Learning Summer School, 2002, pp:118-183 [Conf ] Sebastian Mika , Gunnar Rätsch , Klaus-Robert Müller A Mathematical Programming Approach to the Kernel Fisher Algorithm. [Citation Graph (0, 0)][DBLP ] NIPS, 2000, pp:591-597 [Conf ] Sebastian Mika , Gunnar Rätsch , Jason Weston , Bernhard Schölkopf , Alex J. Smola , Klaus-Robert Müller Invariant Feature Extraction and Classification in Kernel Spaces. [Citation Graph (0, 0)][DBLP ] NIPS, 1999, pp:526-532 [Conf ] Sebastian Mika , Bernhard Schölkopf , Alex J. Smola , Klaus-Robert Müller , Matthias Scholz , Gunnar Rätsch Kernel PCA and De-Noising in Feature Spaces. [Citation Graph (0, 0)][DBLP ] NIPS, 1998, pp:536-542 [Conf ] Gunnar Rätsch , Bernhard Schölkopf , Alex J. Smola , Klaus-Robert Müller , Takashi Onoda , Sebastian Mika v-Arc: Ensemble Learning in the Presence of Outliers. [Citation Graph (0, 0)][DBLP ] NIPS, 1999, pp:561-567 [Conf ] Gunnar Rätsch , Alexander J. Smola , Sebastian Mika Adapting Codes and Embeddings for Polychotomies. [Citation Graph (0, 0)][DBLP ] NIPS, 2002, pp:513-520 [Conf ] Gunnar Rätsch , Sebastian Mika , Manfred K. Warmuth On the Convergence of Leveraging. [Citation Graph (0, 0)][DBLP ] NIPS, 2001, pp:487-494 [Conf ] Gunnar Rätsch , Takashi Onoda , Klaus-Robert Müller Regularizing AdaBoost. [Citation Graph (0, 0)][DBLP ] NIPS, 1998, pp:564-570 [Conf ] Sören Sonnenburg , Gunnar Rätsch , Christin Schäfer A General and Efficient Multiple Kernel Learning Algorithm. [Citation Graph (0, 0)][DBLP ] NIPS, 2005, pp:- [Conf ] Koji Tsuda , Motoaki Kawanabe , Gunnar Rätsch , Sören Sonnenburg , Klaus-Robert Müller A New Discriminative Kernel From Probabilistic Models. [Citation Graph (0, 0)][DBLP ] NIPS, 2001, pp:977-984 [Conf ] Koji Tsuda , Gunnar Rätsch Image Reconstruction by Linear Programming. [Citation Graph (0, 0)][DBLP ] NIPS, 2003, pp:- [Conf ] Koji Tsuda , Gunnar Rätsch , Manfred K. Warmuth Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection. [Citation Graph (0, 0)][DBLP ] NIPS, 2004, pp:- [Conf ] Manfred K. Warmuth , Gunnar Rätsch , Michael Mathieson , Jun Liao , Christian Lemmen Active Learning in the Drug Discovery Process. [Citation Graph (0, 0)][DBLP ] NIPS, 2001, pp:1449-1456 [Conf ] Gunnar Rätsch , Bernhard Schölkopf , Alex J. Smola , Sebastian Mika , Takashi Onoda , Klaus-Robert Müller Robust Ensemble Learning for Data Mining. [Citation Graph (0, 0)][DBLP ] PAKDD, 2000, pp:341-344 [Conf ] Sören Sonnenburg , Gunnar Rätsch , Christin Schäfer Learning Interpretable SVMs for Biological Sequence Classification. [Citation Graph (0, 0)][DBLP ] RECOMB, 2005, pp:389-407 [Conf ] Alexander Zien , Gunnar Rätsch , Sebastian Mika , Bernhard Schölkopf , Thomas Lengauer , Klaus-Robert Müller Engineering support vector machine kernels that recognize translation initiation sites. [Citation Graph (0, 0)][DBLP ] Bioinformatics, 2000, v:16, n:9, pp:799-807 [Journal ] Klaus-Robert Müller , Gunnar Rätsch , Sören Sonnenburg , Sebastian Mika , Michael Grimm , Nikolaus Heinrich Classifying 'Drug-likeness' with Kernel-Based Learning Methods. [Citation Graph (0, 0)][DBLP ] Journal of Chemical Information and Modeling, 2005, v:45, n:2, pp:249-253 [Journal ] Manfred K. Warmuth , Jun Liao , Gunnar Rätsch , Michael Mathieson , Santosh Putta , Christian Lemmen Active Learning with Support Vector Machines in the Drug Discovery Process. [Citation Graph (0, 0)][DBLP ] Journal of Chemical Information and Computer Sciences, 2003, v:43, n:2, pp:667-673 [Journal ] Gunnar Rätsch , Manfred K. Warmuth Efficient Margin Maximizing with Boosting. [Citation Graph (0, 0)][DBLP ] Journal of Machine Learning Research, 2005, v:6, n:, pp:2131-2152 [Journal ] Koji Tsuda , Gunnar Rätsch , Manfred K. Warmuth Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. [Citation Graph (0, 0)][DBLP ] Journal of Machine Learning Research, 2005, v:6, n:, pp:995-1018 [Journal ] Sören Sonnenburg , Gunnar Rätsch , Christin Schäfer , Bernhard Schölkopf Large Scale Multiple Kernel Learning. [Citation Graph (0, 0)][DBLP ] Journal of Machine Learning Research, 2006, v:7, n:, pp:1531-1565 [Journal ] Gunnar Rätsch , Ayhan Demiriz , Kristin P. Bennett Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2002, v:48, n:1-3, pp:189-218 [Journal ] Gunnar Rätsch , Takashi Onoda , Klaus-Robert Müller Soft Margins for AdaBoost. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2001, v:42, n:3, pp:287-320 [Journal ] Koji Tsuda , Motoaki Kawanabe , Gunnar Rätsch , Sören Sonnenburg , Klaus-Robert Müller A New Discriminative Kernel from Probabilistic Models. [Citation Graph (0, 0)][DBLP ] Neural Computation, 2002, v:14, n:10, pp:2397-2414 [Journal ] Sebastian Mika , Gunnar Rätsch , Jason Weston , Bernhard Schölkopf , Alex J. Smola , Klaus-Robert Müller Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces. [Citation Graph (0, 0)][DBLP ] IEEE Trans. Pattern Anal. Mach. Intell., 2003, v:25, n:5, pp:623-633 [Journal ] Gunnar Rätsch , Sebastian Mika , Bernhard Schölkopf , Klaus-Robert Müller Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification. [Citation Graph (0, 0)][DBLP ] IEEE Trans. Pattern Anal. Mach. Intell., 2002, v:24, n:9, pp:1184-1199 [Journal ] Koji Tsuda , Gunnar Rätsch Image reconstruction by linear programming. [Citation Graph (0, 0)][DBLP ] IEEE Transactions on Image Processing, 2005, v:14, n:6, pp:737-744 [Journal ] Gunnar Rätsch , Sören Sonnenburg Large Scale Hidden Semi-Markov SVMs. [Citation Graph (0, 0)][DBLP ] NIPS, 2006, pp:1161-1168 [Conf ] Optimal spliced alignments of short sequence reads. [Citation Graph (, )][DBLP ] KIRMES: Kernel-based Identification of Regulatory Modules in Euchromatic Sequences. [Citation Graph (, )][DBLP ] PALMA: Perfect Alignments using Large Margin Algorithms. [Citation Graph (, )][DBLP ] POIMs: positional oligomer importance matrices - understanding support vector machine-based signal detectors. [Citation Graph (, )][DBLP ] Boosting Algorithms for Maximizing the Soft Margin. [Citation Graph (, )][DBLP ] An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis. [Citation Graph (, )][DBLP ] The Feature Importance Ranking Measure. [Citation Graph (, )][DBLP ] Transcript Normalization and Segmentation of Tiling Array Data. [Citation Graph (, )][DBLP ] Leveraging Sequence Classification by Taxonomy-Based Multitask Learning. [Citation Graph (, )][DBLP ] Novel Machine Learning Methods for MHC Class I Binding Prediction. [Citation Graph (, )][DBLP ] PALMA: mRNA to genome alignments using large margin algorithms. [Citation Graph (, )][DBLP ] KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. [Citation Graph (, )][DBLP ] Accurate splice site prediction using support vector machines. [Citation Graph (, )][DBLP ] NIPS workshop on New Problems and Methods in Computational Biology. [Citation Graph (, )][DBLP ] Learning Interpretable SVMs for Biological Sequence Classification. [Citation Graph (, )][DBLP ] Optimal spliced alignments of short sequence reads. [Citation Graph (, )][DBLP ] Revealing sequence variation patterns in rice with machine learning methods. [Citation Graph (, )][DBLP ] KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. [Citation Graph (, )][DBLP ] Transcript quantification with RNA-Seq data. [Citation Graph (, )][DBLP ] Search in 0.007secs, Finished in 0.010secs