The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Gunnar Rätsch: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Gunnar Rätsch
    Solving Semi-infinite Linear Programs Using Boosting-Like Methods. [Citation Graph (0, 0)][DBLP]
    ALT, 2006, pp:10-11 [Conf]
  2. Gunnar Rätsch, Manfred K. Warmuth
    Maximizing the Margin with Boosting. [Citation Graph (0, 0)][DBLP]
    COLT, 2002, pp:334-350 [Conf]
  3. Gunnar Rätsch, Manfred K. Warmuth, Sebastian Mika, Takashi Onoda, Steven Lemm, Klaus-Robert Müller
    Barrier Boosting. [Citation Graph (0, 0)][DBLP]
    COLT, 2000, pp:170-179 [Conf]
  4. Gunnar Rätsch
    The Solution of Semi-Infinite Linear Programs Using Boosting-Like Methods. [Citation Graph (0, 0)][DBLP]
    Discovery Science, 2006, pp:15- [Conf]
  5. HyunJung Shin, N. Jeremy Hill, Gunnar Rätsch
    Graph Based Semi-supervised Learning with Sharper Edges. [Citation Graph (0, 0)][DBLP]
    ECML, 2006, pp:401-412 [Conf]
  6. Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Christian Lemmen, Alex J. Smola, Thomas Lengauer, Klaus-Robert Müller
    Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites. [Citation Graph (0, 0)][DBLP]
    German Conference on Bioinformatics, 1999, pp:37-43 [Conf]
  7. Klaus-Robert Müller, Alex J. Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, Vladimir Vapnik
    Predicting Time Series with Support Vector Machines. [Citation Graph (0, 0)][DBLP]
    ICANN, 1997, pp:999-1004 [Conf]
  8. Sören Sonnenburg, Gunnar Rätsch, Arun K. Jagota, Klaus-Robert Müller
    New Methods for Splice Site Recognition. [Citation Graph (0, 0)][DBLP]
    ICANN, 2002, pp:329-336 [Conf]
  9. Koji Tsuda, Gunnar Rätsch, Sebastian Mika, Klaus-Robert Müller
    Learning to Predict the Leave-One-Out Error of Kernel Based Classifiers. [Citation Graph (0, 0)][DBLP]
    ICANN, 2001, pp:331-338 [Conf]
  10. Sören Sonnenburg, Gunnar Rätsch, Bernhard Schölkopf
    Large scale genomic sequence SVM classifiers. [Citation Graph (0, 0)][DBLP]
    ICML, 2005, pp:848-855 [Conf]
  11. Manfred K. Warmuth, Jun Liao, Gunnar Rätsch
    Totally corrective boosting algorithms that maximize the margin. [Citation Graph (0, 0)][DBLP]
    ICML, 2006, pp:1001-1008 [Conf]
  12. Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller
    An Improvement of AdaBoost to Avoid Overfitting. [Citation Graph (0, 0)][DBLP]
    ICONIP, 1998, pp:506-509 [Conf]
  13. Gunnar Rätsch, Sören Sonnenburg, Bernhard Schölkopf
    RASE: recognition of alternatively spliced exons in C.elegans. [Citation Graph (0, 0)][DBLP]
    ISMB (Supplement of Bioinformatics), 2005, pp:369-377 [Conf]
  14. Sören Sonnenburg, Alexander Zien, Gunnar Rätsch
    ARTS: accurate recognition of transcription starts in human. [Citation Graph (0, 0)][DBLP]
    ISMB (Supplement of Bioinformatics), 2006, pp:472-480 [Conf]
  15. Ron Meir, Gunnar Rätsch
    An Introduction to Boosting and Leveraging. [Citation Graph (0, 0)][DBLP]
    Machine Learning Summer School, 2002, pp:118-183 [Conf]
  16. Sebastian Mika, Gunnar Rätsch, Klaus-Robert Müller
    A Mathematical Programming Approach to the Kernel Fisher Algorithm. [Citation Graph (0, 0)][DBLP]
    NIPS, 2000, pp:591-597 [Conf]
  17. Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
    Invariant Feature Extraction and Classification in Kernel Spaces. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:526-532 [Conf]
  18. Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, Gunnar Rätsch
    Kernel PCA and De-Noising in Feature Spaces. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:536-542 [Conf]
  19. Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika
    v-Arc: Ensemble Learning in the Presence of Outliers. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:561-567 [Conf]
  20. Gunnar Rätsch, Alexander J. Smola, Sebastian Mika
    Adapting Codes and Embeddings for Polychotomies. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:513-520 [Conf]
  21. Gunnar Rätsch, Sebastian Mika, Manfred K. Warmuth
    On the Convergence of Leveraging. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:487-494 [Conf]
  22. Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller
    Regularizing AdaBoost. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:564-570 [Conf]
  23. Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer
    A General and Efficient Multiple Kernel Learning Algorithm. [Citation Graph (0, 0)][DBLP]
    NIPS, 2005, pp:- [Conf]
  24. Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller
    A New Discriminative Kernel From Probabilistic Models. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:977-984 [Conf]
  25. Koji Tsuda, Gunnar Rätsch
    Image Reconstruction by Linear Programming. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  26. Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth
    Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  27. Manfred K. Warmuth, Gunnar Rätsch, Michael Mathieson, Jun Liao, Christian Lemmen
    Active Learning in the Drug Discovery Process. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:1449-1456 [Conf]
  28. Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Sebastian Mika, Takashi Onoda, Klaus-Robert Müller
    Robust Ensemble Learning for Data Mining. [Citation Graph (0, 0)][DBLP]
    PAKDD, 2000, pp:341-344 [Conf]
  29. Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer
    Learning Interpretable SVMs for Biological Sequence Classification. [Citation Graph (0, 0)][DBLP]
    RECOMB, 2005, pp:389-407 [Conf]
  30. Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Thomas Lengauer, Klaus-Robert Müller
    Engineering support vector machine kernels that recognize translation initiation sites. [Citation Graph (0, 0)][DBLP]
    Bioinformatics, 2000, v:16, n:9, pp:799-807 [Journal]
  31. Klaus-Robert Müller, Gunnar Rätsch, Sören Sonnenburg, Sebastian Mika, Michael Grimm, Nikolaus Heinrich
    Classifying 'Drug-likeness' with Kernel-Based Learning Methods. [Citation Graph (0, 0)][DBLP]
    Journal of Chemical Information and Modeling, 2005, v:45, n:2, pp:249-253 [Journal]
  32. Manfred K. Warmuth, Jun Liao, Gunnar Rätsch, Michael Mathieson, Santosh Putta, Christian Lemmen
    Active Learning with Support Vector Machines in the Drug Discovery Process. [Citation Graph (0, 0)][DBLP]
    Journal of Chemical Information and Computer Sciences, 2003, v:43, n:2, pp:667-673 [Journal]
  33. Gunnar Rätsch, Manfred K. Warmuth
    Efficient Margin Maximizing with Boosting. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2005, v:6, n:, pp:2131-2152 [Journal]
  34. Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth
    Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2005, v:6, n:, pp:995-1018 [Journal]
  35. Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, Bernhard Schölkopf
    Large Scale Multiple Kernel Learning. [Citation Graph (0, 0)][DBLP]
    Journal of Machine Learning Research, 2006, v:7, n:, pp:1531-1565 [Journal]
  36. Gunnar Rätsch, Ayhan Demiriz, Kristin P. Bennett
    Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2002, v:48, n:1-3, pp:189-218 [Journal]
  37. Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller
    Soft Margins for AdaBoost. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2001, v:42, n:3, pp:287-320 [Journal]
  38. Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller
    A New Discriminative Kernel from Probabilistic Models. [Citation Graph (0, 0)][DBLP]
    Neural Computation, 2002, v:14, n:10, pp:2397-2414 [Journal]
  39. Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
    Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces. [Citation Graph (0, 0)][DBLP]
    IEEE Trans. Pattern Anal. Mach. Intell., 2003, v:25, n:5, pp:623-633 [Journal]
  40. Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Klaus-Robert Müller
    Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification. [Citation Graph (0, 0)][DBLP]
    IEEE Trans. Pattern Anal. Mach. Intell., 2002, v:24, n:9, pp:1184-1199 [Journal]
  41. Koji Tsuda, Gunnar Rätsch
    Image reconstruction by linear programming. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Image Processing, 2005, v:14, n:6, pp:737-744 [Journal]
  42. Gunnar Rätsch, Sören Sonnenburg
    Large Scale Hidden Semi-Markov SVMs. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:1161-1168 [Conf]

  43. Optimal spliced alignments of short sequence reads. [Citation Graph (, )][DBLP]


  44. KIRMES: Kernel-based Identification of Regulatory Modules in Euchromatic Sequences. [Citation Graph (, )][DBLP]


  45. PALMA: Perfect Alignments using Large Margin Algorithms. [Citation Graph (, )][DBLP]


  46. POIMs: positional oligomer importance matrices - understanding support vector machine-based signal detectors. [Citation Graph (, )][DBLP]


  47. Boosting Algorithms for Maximizing the Soft Margin. [Citation Graph (, )][DBLP]


  48. An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis. [Citation Graph (, )][DBLP]


  49. The Feature Importance Ranking Measure. [Citation Graph (, )][DBLP]


  50. Transcript Normalization and Segmentation of Tiling Array Data. [Citation Graph (, )][DBLP]


  51. Leveraging Sequence Classification by Taxonomy-Based Multitask Learning. [Citation Graph (, )][DBLP]


  52. Novel Machine Learning Methods for MHC Class I Binding Prediction. [Citation Graph (, )][DBLP]


  53. PALMA: mRNA to genome alignments using large margin algorithms. [Citation Graph (, )][DBLP]


  54. KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. [Citation Graph (, )][DBLP]


  55. Accurate splice site prediction using support vector machines. [Citation Graph (, )][DBLP]


  56. NIPS workshop on New Problems and Methods in Computational Biology. [Citation Graph (, )][DBLP]


  57. Learning Interpretable SVMs for Biological Sequence Classification. [Citation Graph (, )][DBLP]


  58. Optimal spliced alignments of short sequence reads. [Citation Graph (, )][DBLP]


  59. Revealing sequence variation patterns in rice with machine learning methods. [Citation Graph (, )][DBLP]


  60. KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. [Citation Graph (, )][DBLP]


  61. Transcript quantification with RNA-Seq data. [Citation Graph (, )][DBLP]


Search in 0.007secs, Finished in 0.010secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002