Search the dblp DataBase
Einoshin Suzuki :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Yuu Yamada , Einoshin Suzuki , Hideto Yokoi , Katsuhiko Takabayashi Experimental Evaluation of Time-Series Decision Tree. [Citation Graph (0, 0)][DBLP ] Active Mining, 2003, pp:190-209 [Conf ] Einoshin Suzuki Undirected Exception Rule Discovery as Local Pattern Detection. [Citation Graph (0, 0)][DBLP ] Local Pattern Detection, 2004, pp:207-216 [Conf ] Masayuki Hirose , Einoshin Suzuki Using WWW-Distribution of Words in Detecting Peculiar Web Pages. [Citation Graph (0, 0)][DBLP ] Discovery Science, 2004, pp:355-362 [Conf ] Yukihiro Nakamura , Shin Ando , Kenji Aoki , Hiroyuki Mano , Einoshin Suzuki Strategy Diagram for Identifying Play Strategies in Multi-view Soccer Video Data. [Citation Graph (0, 0)][DBLP ] Discovery Science, 2006, pp:173-184 [Conf ] Jérôme Maloberti , Einoshin Suzuki Improving Efficiency of Frequent Query Discovery by Eliminating Non-relevant Candidates. [Citation Graph (0, 0)][DBLP ] Discovery Science, 2003, pp:220-232 [Conf ] Masaki Narahashi , Einoshin Suzuki Subspace Clustering Based on Compressibility. [Citation Graph (0, 0)][DBLP ] Discovery Science, 2002, pp:435-440 [Conf ] Shinsuke Sugaya , Einoshin Suzuki Normal Form Transformation for Object Recognition Based on Support Vector Machines. [Citation Graph (0, 0)][DBLP ] Discovery Science, 1999, pp:306-315 [Conf ] Einoshin Suzuki Issues in Organizing a Successful Knowledge Discovery Contest. [Citation Graph (0, 0)][DBLP ] Discovery Science, 2000, pp:282-284 [Conf ] Einoshin Suzuki Worst-Case Analysis of Rule Discovery. [Citation Graph (0, 0)][DBLP ] Discovery Science, 2001, pp:365-377 [Conf ] Einoshin Suzuki Scheduled Discovery of Exception Rules. [Citation Graph (0, 0)][DBLP ] Discovery Science, 1999, pp:184-195 [Conf ] Einoshin Suzuki In Pursuit of Interesting Patterns with Undirected Discovery of Exception Rules. [Citation Graph (0, 0)][DBLP ] Progress in Discovery Science, 2002, pp:504-517 [Conf ] Jérôme Maloberti , Shin Ando , Einoshin Suzuki Classification non-supervisée de données relationnelles. [Citation Graph (0, 0)][DBLP ] EGC, 2006, pp:389-390 [Conf ] Régis Gras , Pascale Kuntz , Einoshin Suzuki Une règle d'exception en Analyse Statistique Implicative. [Citation Graph (0, 0)][DBLP ] EGC, 2007, pp:87-98 [Conf ] Einoshin Suzuki Peut-on Capturer la Sémantique à Travers la Syntaxe ? - Découverte des Règles d'Exception Simultanée. [Citation Graph (0, 0)][DBLP ] EGC, 2007, pp:1- [Conf ] Pierre Morizet-Mahoudeaux , Einoshin Suzuki , Setsuo Ohsuga Knowledge-Based Handling of Design Expertise. [Citation Graph (0, 4)][DBLP ] ICDE, 1994, pp:368-374 [Conf ] Einoshin Suzuki , Takeshi Watanabe , Hideto Yokoi , Katsuhiko Takabayashi Detecting Interesting Exceptions from Medical Test Data with Visual Summarization. [Citation Graph (0, 0)][DBLP ] ICDM, 2003, pp:315-322 [Conf ] Shin Ando , Einoshin Suzuki An Information Theoretic Approach to Detection of Minority Subsets in Database. [Citation Graph (0, 0)][DBLP ] ICDM, 2006, pp:11-20 [Conf ] Fumio Takechi , Einoshin Suzuki Finding an Optimal Gain-Ratio Subset-Split Test for a Set-Valued Attribute in Decision Tree Induction. [Citation Graph (0, 0)][DBLP ] ICML, 2002, pp:618-625 [Conf ] Yuu Yamada , Einoshin Suzuki , Hideto Yokoi , Katsuhiko Takabayashi Decision-tree Induction from Time-series Data Based on a Standard-example Split Test. [Citation Graph (0, 0)][DBLP ] ICML, 2003, pp:840-847 [Conf ] Jérôme Maloberti , Einoshin Suzuki An Efficient Algorithm for Reducing Clauses Based on Constraint Satisfaction Techniques. [Citation Graph (0, 0)][DBLP ] ILP, 2004, pp:234-251 [Conf ] Marie Agier , Jean-Marc Petit , Einoshin Suzuki Towards Ad-Hoc Rule Semantics for Gene Expression Data. [Citation Graph (0, 0)][DBLP ] ISMIS, 2005, pp:494-503 [Conf ] Nicolas Durand , Bruno Crémilleux , Einoshin Suzuki Visualizing Transactional Data with Multiple Clusterings for Knowledge Discovery. [Citation Graph (0, 0)][DBLP ] ISMIS, 2006, pp:47-57 [Conf ] Shutaro Inatani , Einoshin Suzuki Data Squashing for Speeding Up Boosting-Based Outlier Detection. [Citation Graph (0, 0)][DBLP ] ISMIS, 2002, pp:601-612 [Conf ] Masatoshi Jumi , Einoshin Suzuki , Muneaki Ohshima , Ning Zhong , Hideto Yokoi , Katsuhiko Takabayashi Multi-strategy Instance Selection in Mining Chronic Hepatitis Data. [Citation Graph (0, 0)][DBLP ] ISMIS, 2005, pp:475-484 [Conf ] Einoshin Suzuki Autonomous Discovery of Reliable Exception Rules. [Citation Graph (0, 0)][DBLP ] KDD, 1997, pp:259-262 [Conf ] Einoshin Suzuki Simultaneous Reliability Evaluation of Generality and Accuracy for Rule Discovery in Databases. [Citation Graph (0, 0)][DBLP ] KDD, 1998, pp:339-343 [Conf ] Einoshin Suzuki , Masamichi Shimura Exceptional Knowledge Discovery in Databases Based on Information Theory. [Citation Graph (0, 0)][DBLP ] KDD, 1996, pp:275-278 [Conf ] Farhad Hussain , Huan Liu , Einoshin Suzuki , Hongjun Lu Exception Rule Mining with a Relative Interestingness Measure. [Citation Graph (0, 0)][DBLP ] PAKDD, 2000, pp:86-97 [Conf ] Einoshin Suzuki , Toru Ohno Prediction Rule Discovery Based on Dynamic Bias Selection. [Citation Graph (0, 0)][DBLP ] PAKDD, 1999, pp:504-508 [Conf ] Einoshin Suzuki , Shusaku Tsumoto Evaluating Hypothesis-Driven Exception-Rule Discovery with Medical Data Sets. [Citation Graph (0, 0)][DBLP ] PAKDD, 2000, pp:208-211 [Conf ] Yuta Choki , Einoshin Suzuki Iterative Data Squashing for Boosting Based on a Distribution-Sensitive Distance. [Citation Graph (0, 0)][DBLP ] PKDD, 2002, pp:86-98 [Conf ] Shinsuke Sugaya , Einoshin Suzuki , Shusaku Tsumoto Support Vector Machines for Knowledge Discovery. [Citation Graph (0, 0)][DBLP ] PKDD, 1999, pp:561-567 [Conf ] Einoshin Suzuki , Masafumi Gotoh , Yuta Choki Bloomy Decision Tree for Multi-objective Classification. [Citation Graph (0, 0)][DBLP ] PKDD, 2001, pp:436-447 [Conf ] Einoshin Suzuki , Yves Kodratoff Discovery of Surprising Exception Rules Based on Intensity of Implication. [Citation Graph (0, 0)][DBLP ] PKDD, 1998, pp:10-18 [Conf ] Einoshin Suzuki , Jan M. Zytkow Unified Algorithm for Undirected Discovery of Execption Rules. [Citation Graph (0, 0)][DBLP ] PKDD, 2000, pp:169-180 [Conf ] David Ramamonjisoa , Einoshin Suzuki , Issam A. Hamid Research Topics Discovery from WWW by Keywords Association Rules. [Citation Graph (0, 0)][DBLP ] Rough Sets and Current Trends in Computing, 2000, pp:412-419 [Conf ] Einoshin Suzuki , Hiroki Ishihara Visualizing Discovered Rule Sets with Visual Graphs Based on Compressed Entropy Density. [Citation Graph (0, 0)][DBLP ] RSFDGrC, 1999, pp:414-422 [Conf ] Masaki Narahashi , Einoshin Suzuki Detecting Hostile Accesses through Incremental Subspace Clustering. [Citation Graph (0, 0)][DBLP ] Web Intelligence, 2003, pp:337-343 [Conf ] Masanori Yoshinaga , Yukihiro Nakamura , Einoshin Suzuki Mini-Car-Soccer as a testbed for granular computing. [Citation Graph (0, 0)][DBLP ] GrC, 2005, pp:92-97 [Conf ] Einoshin Suzuki Worst Case and a Distribution-Based Case Analyses of Sampling for Rule Discovery Based on Generality and Accuracy. [Citation Graph (0, 0)][DBLP ] Appl. Intell., 2005, v:22, n:1, pp:29-36 [Journal ] Einoshin Suzuki , Jan M. Zytkow Unified algorithm for undirected discovery of exception rules. [Citation Graph (0, 0)][DBLP ] Int. J. Intell. Syst., 2005, v:20, n:7, pp:673-691 [Journal ] Einoshin Suzuki Undirected Discovery of Interesting Exception Rules. [Citation Graph (0, 0)][DBLP ] IJPRAI, 2002, v:16, n:8, pp:1065-1086 [Journal ] Einoshin Suzuki Data Mining Methods for Discovering Interesting Exceptions from an Unsupervised Table. [Citation Graph (0, 0)][DBLP ] J. UCS, 2006, v:12, n:6, pp:627-653 [Journal ] Tatsuya Akutsu , Einoshin Suzuki , Setsuo Ohsuga Logic-based approach to expert systems in chemistry. [Citation Graph (0, 0)][DBLP ] Knowl.-Based Syst., 1991, v:4, n:2, pp:103-116 [Journal ] Einoshin Suzuki , Tatsuya Akutsu , Setsuo Ohsuga Knowledge-based system for computer-aided drug design. [Citation Graph (0, 0)][DBLP ] Knowl.-Based Syst., 1993, v:6, n:2, pp:114-126 [Journal ] Shin Ando , Einoshin Suzuki , Shigenobu Kobayashi Sample based crowding method for multimodal optimization in continuous domain. [Citation Graph (0, 0)][DBLP ] Congress on Evolutionary Computation, 2005, pp:1867-1874 [Conf ] Marie Agier , Jean-Marc Petit , Einoshin Suzuki Unifying Framework for Rule Semantics: Application to Gene Expression Data. [Citation Graph (0, 0)][DBLP ] Fundam. Inform., 2007, v:78, n:4, pp:543-559 [Journal ] Discovering Community-Oriented Roles of Nodes in a Social Network. [Citation Graph (, )][DBLP ] Finding the k -Most Abnormal Subgraphs from a Single Graph. [Citation Graph (, )][DBLP ] Unsupervised Cross-Domain Learning by Interaction Information Co-clustering. [Citation Graph (, )][DBLP ] Compression-Based Measures for Mining Interesting Rules. [Citation Graph (, )][DBLP ] Detection of unique temporal segments by information theoretic meta-clustering. [Citation Graph (, )][DBLP ] Negative Encoding Length as a Subjective Interestingness Measure for Groups of Rules. [Citation Graph (, )][DBLP ] Discovering Action Rules That Are Highly Achievable from Massive Data. [Citation Graph (, )][DBLP ] Subclass-Oriented Dimension Reduction with Constraint Transformation and Manifold Regularization. [Citation Graph (, )][DBLP ] Mining Peculiar Compositions of Frequent Substrings from Sparse Text Data Using Background Texts. [Citation Graph (, )][DBLP ] Semi-supervised Projection Clustering with Transferred Centroid Regularization. [Citation Graph (, )][DBLP ] Intuitive Display for Search Engines Toward Fast Detection of Peculiar WWW Pages. [Citation Graph (, )][DBLP ] Search in 0.005secs, Finished in 0.007secs