
Search the dblp DataBase
G. Pastor:
[Publications]
[Author Rank by year]
[Coauthors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
 G. Pastor, M. Romera, Gonzalo Álvarez, F. Montoya
Chaotic bands in the Mandelbrot set. [Citation Graph (0, 0)][DBLP] Computers & Graphics, 2004, v:28, n:5, pp:779784 [Journal]
 M. Romera, V. Bañuls, G. Pastor, Gonzalo Álvarez, F. Montoya
Snaillike pattern generation with the Hénon family of maps. [Citation Graph (0, 0)][DBLP] Computers & Graphics, 2001, v:25, n:3, pp:529537 [Journal]
 M. Romera, G. Pastor, Gonzalo Álvarez, F. Montoya
Growth in complex exponential dynamics. [Citation Graph (0, 0)][DBLP] Computers & Graphics, 2000, v:24, n:1, pp:115131 [Journal]
 M. Romera, G. Pastor, Gonzalo Álvarez, F. Montoya
External arguments of Douady cauliflowers in the Mandelbrot set. [Citation Graph (0, 0)][DBLP] Computers & Graphics, 2004, v:28, n:3, pp:437449 [Journal]
 M. Romera, G. Pastor, Gonzalo Álvarez, F. Montoya
External arguments in the multiplespiral medallions of the Mandelbrot set. [Citation Graph (0, 0)][DBLP] Computers & Graphics, 2006, v:30, n:3, pp:460469 [Journal]
 M. Romera, G. Pastor, F. Montoya
Graphic tools to analyse onedimensional quadratic maps. [Citation Graph (0, 0)][DBLP] Computers & Graphics, 1996, v:20, n:2, pp:333339 [Journal]
 M. Romera, G. Pastor, F. Montoya
A scaling constant equal to unity in 1D quadratic maps. [Citation Graph (0, 0)][DBLP] Computers & Graphics, 1997, v:21, n:6, pp:849857 [Journal]
Drawing and computing external rays in the multiplespiral medallions of the Mandelbrot set. [Citation Graph (, )][DBLP]
Trident, a new pseudo random number generator based on coupled chaotic maps [Citation Graph (, )][DBLP]
Search in 0.002secs, Finished in 0.003secs
