The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Richard H. Schelp: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Multipartite graph - space graph Ramsey numbers. [Citation Graph (0, 0)][DBLP]
    Combinatorica, 1985, v:5, n:4, pp:311-318 [Journal]
  2. Ralph J. Faudree, Richard H. Schelp, Vera T. Sós
    Some intersection theorems on two valued functions. [Citation Graph (0, 0)][DBLP]
    Combinatorica, 1986, v:6, n:4, pp:327-333 [Journal]
  3. Guantao Chen, Richard H. Schelp
    Ramsey Problems With Bounded Degree Spread. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 1993, v:2, n:, pp:263-269 [Journal]
  4. Paul N. Balister, Ervin Györi, Jenö Lehel, Richard H. Schelp
    Longest Paths in Circular Arc Graphs. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 2004, v:13, n:3, pp:311-317 [Journal]
  5. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Ramsey Size Linear Graphs. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 1993, v:2, n:, pp:389-399 [Journal]
  6. Richard H. Schelp, Andrew Thomason
    A Remark on the Number of Complete and Empty Subgraphs. [Citation Graph (0, 0)][DBLP]
    Combinatorics, Probability & Computing, 1998, v:7, n:2, pp:217-219 [Journal]
  7. Ralph J. Faudree, Zdenek Ryjácek, Richard H. Schelp
    On local and global independence numbers of a graph. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:132, n:1-3, pp:79-84 [Journal]
  8. András Gyárfás, Richard H. Schelp
    A Communication Problem and Directed Triple Systems. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1998, v:85, n:2, pp:139-147 [Journal]
  9. Vladimir Nikiforov, Richard H. Schelp
    Making the components of a graph k-connected. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2007, v:155, n:3, pp:410-415 [Journal]
  10. Guantao Chen, Richard H. Schelp
    Decomposition of bipartite graphs into special subgraphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2007, v:155, n:3, pp:400-404 [Journal]
  11. Paul N. Balister, Béla Bollobás, Richard H. Schelp
    Vertex distinguishing colorings of graphs with Delta(G)=2. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2002, v:252, n:1-3, pp:17-29 [Journal]
  12. Béla Bollobás, Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Random induced graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2002, v:248, n:1-3, pp:249-254 [Journal]
  13. Ervin Györi, Vladimir Nikiforov, Richard H. Schelp
    Nearly bipartite graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2003, v:272, n:2-3, pp:187-196 [Journal]
  14. Ervin Györi, Richard H. Schelp
    Two-edge colorings of graphs with bounded degree in both colors. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2002, v:249, n:1-3, pp:105-110 [Journal]
  15. Rao Li, Richard H. Schelp
    Some hamiltonian properties of L1-graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2000, v:223, n:1-3, pp:207-216 [Journal]
  16. Rao Li, Richard H. Schelp
    Hamiltonicity of {K1, 4, K1, 4+e}-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2002, v:245, n:1-3, pp:195-202 [Journal]
  17. Rao Li, Richard H. Schelp
    Every 3-connected distance claw-free graph is Hamilton-connected. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2003, v:268, n:1-3, pp:185-197 [Journal]
  18. Zdenek Ryjácek, Akira Saito, Richard H. Schelp
    Claw-free graphs with complete closure. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2001, v:236, n:1-3, pp:325-338 [Journal]
  19. Ralph J. Faudree, Richard H. Schelp, Akira Saito, Ingo Schiermeyer
    Degree conditions for hamiltonicity: Counting the number of missing edges. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2007, v:307, n:7-8, pp:873-877 [Journal]
  20. Guantao Chen, Richard H. Schelp, Warren E. Shreve
    A New Game Chromatic Number. [Citation Graph (0, 0)][DBLP]
    Eur. J. Comb., 1997, v:18, n:1, pp:1-9 [Journal]
  21. Paul Erdös, Guantao Chen, Cecil C. Rousseau, Richard H. Schelp
    Ramsey Problems Involving Degrees in Edge-colored Complete Graphs of Vertices Belonging to Monochromatic Subgraphs. [Citation Graph (0, 0)][DBLP]
    Eur. J. Comb., 1993, v:14, n:3, pp:183-189 [Journal]
  22. Béla Bollobás, Jair Donadelli, Yoshiharu Kohayakawa, Richard H. Schelp
    Ramsey minimal graphs. [Citation Graph (0, 0)][DBLP]
    J. Braz. Comp. Soc., 2001, v:7, n:3, pp:27-37 [Journal]
  23. Paul Balister, Béla Bollobás, Oliver Riordan, Richard H. Schelp
    Graphs with large maximum degree containing no odd cycles of a given length. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 2003, v:87, n:2, pp:366-373 [Journal]
  24. Paul N. Balister, András Gyárfás, Jenö Lehel, Richard H. Schelp
    Mono-multi bipartite Ramsey numbers, designs, and matrices. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. A, 2006, v:113, n:1, pp:101-112 [Journal]
  25. Paul N. Balister, Alexandr V. Kostochka, Hao Li, Richard H. Schelp
    Balanced edge colorings. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 2004, v:90, n:1, pp:3-20 [Journal]
  26. Béla Bollobás, Alexandr V. Kostochka, Richard H. Schelp
    Local and Mean Ramsey Numbers for Trees. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 2000, v:79, n:1, pp:100-103 [Journal]
  27. Guantao Chen, Richard H. Schelp
    Graphs with Linearly Bounded Ramsey Numbers. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 1993, v:57, n:1, pp:138-149 [Journal]
  28. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Graphs with certain families of spanning trees. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 1982, v:32, n:2, pp:162-170 [Journal]
  29. Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson, Richard H. Schelp
    Neighborhood unions and hamiltonian properties in graphs. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 1989, v:47, n:1, pp:1-9 [Journal]
  30. András Gyárfás, Jenö Lehel, Jaroslav Nesetril, Vojtech Rödl, Richard H. Schelp, Zsolt Tuza
    Local k-colorings of graphs and hypergraphs. [Citation Graph (0, 0)][DBLP]
    J. Comb. Theory, Ser. B, 1987, v:43, n:2, pp:127-139 [Journal]
  31. Paul N. Balister, Jenö Lehel, Richard H. Schelp
    Ramsey unsaturated and saturated graphs. [Citation Graph (0, 0)][DBLP]
    Journal of Graph Theory, 2006, v:51, n:1, pp:22-32 [Journal]
  32. Vladimir Nikiforov, Richard H. Schelp
    Cycle lengths in graphs with large minimum degree. [Citation Graph (0, 0)][DBLP]
    Journal of Graph Theory, 2006, v:52, n:2, pp:157-170 [Journal]
  33. András Gyárfás, Jenö Lehel, Richard H. Schelp
    Finding a monochromatic subgraph or a rainbow path. [Citation Graph (0, 0)][DBLP]
    Journal of Graph Theory, 2007, v:54, n:1, pp:1-12 [Journal]
  34. Vladimir Nikiforov, Richard H. Schelp
    Cycles and paths in graphs with large minimal degree. [Citation Graph (0, 0)][DBLP]
    Journal of Graph Theory, 2004, v:47, n:1, pp:39-52 [Journal]
  35. Ralph J. Faudree, Richard H. Schelp, J. Sheehan
    Ramsey numbers for matchings. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1980, v:32, n:2, pp:105-123 [Journal]
  36. Stefan A. Burr, Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Ramsey-minimal graphs for star-forests. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1981, v:33, n:3, pp:227-237 [Journal]
  37. Stefan A. Burr, Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Ramsey-minimal graphs for forests. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1982, v:38, n:1, pp:23-32 [Journal]
  38. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    A Ramsey problem of Harary on graphs with prescribed size. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1987, v:67, n:3, pp:227-233 [Journal]
  39. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Extremal theory and bipartite graph-tree Ramsey numbers. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1988, v:72, n:1-3, pp:103-112 [Journal]
  40. Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Small order graph-tree Ramsey numbers. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1988, v:72, n:1-3, pp:119-127 [Journal]
  41. Ralph J. Faudree, Richard H. Schelp, Michael S. Jacobson, Jenö Lehel
    Irregular networks, regular graphs and integer matrices with distinct row and column sums. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1989, v:76, n:3, pp:223-240 [Journal]
  42. Ralph J. Faudree, András Gyárfás, Richard H. Schelp, Zsolt Tuza
    Induced matchings in bipartite graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1989, v:78, n:1-2, pp:83-87 [Journal]
  43. Guantao Chen, András Gyárfás, Richard H. Schelp
    Vertex colorings with a distance restriction. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1998, v:191, n:1-3, pp:65-82 [Journal]
  44. Béla Bollobás, Oliver Riordan, Zdenek Ryjácek, Akira Saito, Richard H. Schelp
    Closure and Hamiltonian-connectivity of claw-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1999, v:195, n:1-3, pp:67-80 [Journal]
  45. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    The number of cycle lengths in graphs of given minimum degree and girth. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1999, v:200, n:1-3, pp:55-60 [Journal]
  46. Guantao Chen, Richard H. Schelp, Warren E. Shreve
    A special k-coloring for a connected k-chromatic graph. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:170, n:1-3, pp:231-236 [Journal]
  47. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    Subgraphs of minimal degree k. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1990, v:85, n:1, pp:53-58 [Journal]
  48. P. Bedrossian, Guantao Chen, Richard H. Schelp
    A generalization of Fan's condition for Hamiltonicity, pancyclicity, and Hamiltonian connectedness. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1993, v:115, n:1-3, pp:39-50 [Journal]
  49. Paul Erdös, Ralph J. Faudree, Talmage James Reid, Richard H. Schelp, William Staton
    Degree sequence and independence in K(4)-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1995, v:141, n:1-3, pp:285-290 [Journal]
  50. Paul Erdös, Talmage James Reid, Richard H. Schelp, William Staton
    Sizes of graphs with induced subgraphs of large maximum degree. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1996, v:158, n:1-3, pp:283-286 [Journal]
  51. Odile Favaron, Hao Li, Richard H. Schelp
    Strong edge colorings of graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1996, v:159, n:1-3, pp:103-109 [Journal]
  52. Ralph J. Faudree, Richard H. Schelp, Linda M. Lesniak, András Gyárfás, Jenö Lehel
    On the rotation distance of graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1994, v:126, n:1-3, pp:121-135 [Journal]
  53. Paul Erdös, Ralph J. Faudree, Cecil C. Rousseau, Richard H. Schelp
    A local density condition for triangles. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1994, v:127, n:1-3, pp:153-161 [Journal]

  54. Connected graphs without long paths. [Citation Graph (, )][DBLP]


Search in 0.137secs, Finished in 0.141secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002