|
Search the dblp DataBase
Henk Jan Veldman:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
- Douglas Bauer, Hajo Broersma, Henk Jan Veldman
Not Every 2-tough Graph Is Hamiltonian. [Citation Graph (0, 0)][DBLP] Discrete Applied Mathematics, 2000, v:99, n:1-3, pp:317-321 [Journal]
- Douglas Bauer, Gyula Y. Katona, Dieter Kratsch, Henk Jan Veldman
Chordality and 2-factors in Tough Graphs. [Citation Graph (0, 0)][DBLP] Discrete Applied Mathematics, 2000, v:99, n:1-3, pp:323-329 [Journal]
- Douglas Bauer, Linda E. McGuire, Huib Trommel, Henk Jan Veldman
Long cycles in 3-cyclable graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2000, v:218, n:1-3, pp:1-8 [Journal]
- Douglas Bauer, Hajo Broersma, Henk Jan Veldman, Li Rao
A generalization of a result of Häggkvist and Nicoghossian. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1989, v:47, n:2, pp:237-243 [Journal]
- Cornelis Hoede, Henk Jan Veldman
On characterization of Hamiltonian graphs. [Citation Graph (0, 0)][DBLP] J. Comb. Theory, Ser. B, 1978, v:25, n:1, pp:47-53 [Journal]
- Cornelis Hoede, Henk Jan Veldman
Contraction theorems in Hamiltonian graph theory. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1981, v:34, n:1, pp:61-67 [Journal]
- Henk Jan Veldman
Existence of dominating cycles and paths. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1983, v:43, n:2-3, pp:281-296 [Journal]
- Henk Jan Veldman
Non-kappa-critical vertices in graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1983, v:44, n:1, pp:105-110 [Journal]
- Henk Jan Veldman
Existence of Dlambda-cycles and Dlambda-paths. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1983, v:44, n:3, pp:309-316 [Journal]
- H. J. Krol, Henk Jan Veldman
On maximum critically h-connected graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1984, v:52, n:2-3, pp:225-234 [Journal]
- Douglas Bauer, Henk Jan Veldman, Aurora Morgana, Edward F. Schmeichel
Long cycles in graphs with large degree sums. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1990, v:79, n:1, pp:59-70 [Journal]
- Huib Trommel, Henk Jan Veldman, A. Verschut
Pancyclicity of claw-free hamiltonian graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1999, v:197, n:, pp:781-789 [Journal]
- Hajo Broersma, Hao Li, Jianping Li, Feng Tian, Henk Jan Veldman
Cycles through subsets with large degree sums. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1997, v:171, n:1-3, pp:43-54 [Journal]
- F. Göbel, J. Orestes Cerdeira, Henk Jan Veldman
Label-connected graphs and the gossip problem. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1991, v:87, n:1, pp:29-40 [Journal]
- Douglas Bauer, Genghua Fan, Henk Jan Veldman
Hamiltonian properties of graphs with large neighborhood unions. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1991, v:96, n:1, pp:33-49 [Journal]
- Henk Jan Veldman
Cycles containing many vertices of large degree. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1992, v:101, n:1-3, pp:319-325 [Journal]
- Douglas Bauer, H. J. Broersma, J. van den Heuvel, Henk Jan Veldman
Long cycles in graphs with prescribed toughness and minimum degree. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1995, v:141, n:1-3, pp:1-10 [Journal]
- Douglas Bauer, Edward F. Schmeichel, Henk Jan Veldman
A note on dominating cycles in 2-connected graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1996, v:155, n:1-3, pp:13-18 [Journal]
- E. van Blanken, J. van den Heuvel, Henk Jan Veldman
Pancyclicity of hamiltonian line graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1995, v:138, n:1-3, pp:379-385 [Journal]
- H. J. Broersma, J. van den Heuvel, Henk Jan Veldman
Long cycles, degree sums and neighborhood unions. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1993, v:121, n:1-3, pp:25-35 [Journal]
- H. J. Broersma, J. van den Heuvel, Henk Jan Veldman
A generalization of Ore's Theorem involving neighborhood unions. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1993, v:122, n:1-3, pp:37-49 [Journal]
- Henk Jan Veldman
On dominating and spanning circuits in graphs. [Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1994, v:124, n:1-3, pp:229-239 [Journal]
Search in 0.018secs, Finished in 0.020secs
|