Search the dblp DataBase
Jan De Beule :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Jan De Beule , Klaus Metsch The smallest point sets that meet all generators of H (2n, q ^{2} ). [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2005, v:294, n:1-2, pp:75-81 [Journal ] Jan De Beule , Leo Storme On the smallest minimal blocking sets of Q (2n, q ), for q an odd prime. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2005, v:294, n:1-2, pp:83-107 [Journal ] Matthew R. Brown , Jan De Beule , Leo Storme Maximal partial spreads of T_{2} (O) and T_{3} . [Citation Graph (0, 0)][DBLP ] Eur. J. Comb., 2003, v:24, n:1, pp:73-84 [Journal ] Jan De Beule , Klaus Metsch Small point sets that meet all generators of Q(2n, p), p>3 prime. [Citation Graph (0, 0)][DBLP ] J. Comb. Theory, Ser. A, 2004, v:106, n:2, pp:327-333 [Journal ] Jan De Beule , Klaus Metsch , Leo Storme Characterization results on small blocking sets of the polar spaces Q ^{+} (2 n + 1, 2) and Q ^{+} (2 n + 1, 3). [Citation Graph (0, 0)][DBLP ] Des. Codes Cryptography, 2007, v:44, n:1-3, pp:197-207 [Journal ] Jan De Beule , Klaus Metsch The maximum size of a partial spread in H(5, q^{2} ) is q^{3} +1. [Citation Graph (0, 0)][DBLP ] J. Comb. Theory, Ser. A, 2007, v:114, n:4, pp:761-768 [Journal ] Partial ovoids and partial spreads in hermitian polar spaces. [Citation Graph (, )][DBLP ] Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound. [Citation Graph (, )][DBLP ] Tight sets, weighted m -covers, weighted m -ovoids, and minihypers. [Citation Graph (, )][DBLP ] Partial ovoids and partial spreads in symplectic and orthogonal polar spaces. [Citation Graph (, )][DBLP ] Search in 0.003secs, Finished in 0.003secs