The SCEAS System
| |||||||

## Search the dblp DataBase
Dae San Kim:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- Dae San Kim, Dong Chan Kim
**Character sums and MacWilliams identities.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:287, n:1-3, pp:155-160 [Journal] - Dae San Kim, Jeh Gwon Lee
**A MacWilliams-type identity for linear codes on weak order.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:262, n:1-3, pp:181-194 [Journal] - Sung Hee Cho, Dae San Kim
**Automorphism group of the crown-weight space.**[Citation Graph (0, 0)][DBLP] Eur. J. Comb., 2006, v:27, n:1, pp:90-100 [Journal] - Dae San Kim
**MacWilliams-type identities for fragment and sphere enumerators.**[Citation Graph (0, 0)][DBLP] Eur. J. Comb., 2007, v:28, n:1, pp:273-302 [Journal] - Dae San Kim, Sung Hee Cho
**Weight distribution of the crown-weight space.**[Citation Graph (0, 0)][DBLP] Eur. J. Comb., 2007, v:28, n:1, pp:356-370 [Journal] - Dae San Kim
**Dual MacWilliams pair.**[Citation Graph (0, 0)][DBLP] IEEE Transactions on Information Theory, 2005, v:51, n:8, pp:2901-2905 [Journal] - Dae San Kim
**Weight Distributions of Hamming Codes**[Citation Graph (0, 0)][DBLP] CoRR, 2007, v:0, n:, pp:- [Journal] - Dae San Kim
**Weight Distributions of Hamming Codes (II)**[Citation Graph (0, 0)][DBLP] CoRR, 2007, v:0, n:, pp:- [Journal] **Codes Associated with Special Linear Groups and Power Moments of Multi-dimensional Kloosterman Sums**[Citation Graph (, )][DBLP]**Codes Associated with O**[Citation Graph (, )][DBLP]^{+}(2n,2^{r}) and Power Moments of Kloosterman Sums**Codes Associated with Orthogonal Groups and Power Moments of Kloosterman Sums**[Citation Graph (, )][DBLP]**Infinite families of recursive formulas generating power moments of Kloosterman sums: O^- (2n, 2^r) case**[Citation Graph (, )][DBLP]**Infinite Families of Recursive Formulas Generating Power Moments of Kloosterman Sums: Symplectic Case**[Citation Graph (, )][DBLP]**Infinite Families of Recursive Formulas Generating Power Moments of Kloosterman Sums: O\^{+}(2n, 2r) Case**[Citation Graph (, )][DBLP]**Simple Recursive Formulas Generating Power Moments of Kloosterman Sums**[Citation Graph (, )][DBLP]**An Infinite Family of Recursive Formulas Generating Power Moments of Kloosterman Sums with Trace One Arguments: O(2n+1,2^r) Case**[Citation Graph (, )][DBLP]**Ternary Codes Associated with O^-(2n,q) and Power Moments of Kloosterman Sums with Square Arguments**[Citation Graph (, )][DBLP]**Recursive formulas generating power moments of multi-dimensional Kloosterman sums and m-multiple power moments of Kloosterman sums**[Citation Graph (, )][DBLP]**Ternary Codes Associated with O(3,3^r) and Power Moments of Kloosterman Sums with Trace Nonzero Square Arguments**[Citation Graph (, )][DBLP]**Infinite Families of Recursive Formulas Generating Power Moments of Ternary Kloosterman Sums with Trace Nonzero Square Arguments: O(2n+1,2^{r}) Case**[Citation Graph (, )][DBLP]**Infinite Families of Recursive Formulas Generating Power Moments of Ternary Kloosterman Sums with Square Arguments Associated with O^{-}_{}(2n,q)**[Citation Graph (, )][DBLP]**A Recursive Formula for Power Moments of 2-Dimensional Kloosterman Sums Assiciated with General Linear Groups**[Citation Graph (, )][DBLP]
Search in 0.021secs, Finished in 0.021secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |