The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Franz Rendl: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Gerald Gruber, Franz Rendl
    The Bundle Method for Hard Combinatorial Optimization Problems. [Citation Graph (0, 0)][DBLP]
    Combinatorial Optimization, 2001, pp:78-88 [Conf]
  2. Scott W. Hadley, Franz Rendl, Henry Wolkowicz
    Bounds for the Quadratic Assignment Problems Using Continuous Optimization Techniques. [Citation Graph (0, 0)][DBLP]
    IPCO, 1990, pp:237-248 [Conf]
  3. Christoph Helmberg, Krzysztof C. Kiwiel, Franz Rendl
    Incorporating Inequality Constraints in the Spectral Bundle Method. [Citation Graph (0, 0)][DBLP]
    IPCO, 1998, pp:423-436 [Conf]
  4. Christoph Helmberg, Bojan Mohar, Svatopluk Poljak, Franz Rendl
    A spectral approach to bandwidth and separator problems in graphs. [Citation Graph (0, 0)][DBLP]
    IPCO, 1993, pp:183-194 [Conf]
  5. Christoph Helmberg, Svatopluk Poljak, Franz Rendl, Henry Wolkowicz
    Combining Semidefinite and Polyhedral Relaxations for Integer Programs. [Citation Graph (0, 0)][DBLP]
    IPCO, 1995, pp:124-134 [Conf]
  6. Christoph Helmberg, Franz Rendl, Robert Weismantel
    Quadratic Knapsack Relaxations Using Cutting Planes. [Citation Graph (0, 0)][DBLP]
    IPCO, 1996, pp:175-189 [Conf]
  7. Hans Kellerer, Franz Rendl, Gerhard J. Woeginger
    Computing the optimum stock size. [Citation Graph (0, 0)][DBLP]
    IPCO, 1993, pp:147-159 [Conf]
  8. Michel X. Goemans, Franz Rendl
    Semidefinite Programs and Association Schemes. [Citation Graph (0, 0)][DBLP]
    Computing, 1999, v:63, n:4, pp:331-340 [Journal]
  9. J. Povh, F. Rendl, A. Wiegele
    A Boundary Point Method to Solve Semidefinite Programs. [Citation Graph (0, 0)][DBLP]
    Computing, 2006, v:78, n:3, pp:277-286 [Journal]
  10. Svatopluk Poljak, Franz Rendl
    Solving the Max-cut Problem Using Eigenvalues. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1995, v:62, n:1-3, pp:249-278 [Journal]
  11. Charles H. C. Little, Franz Rendl, Ilse Fischer
    Towards a characterisation of Pfaffian near bipartite graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2002, v:244, n:1-3, pp:279-297 [Journal]
  12. Stefan E. Karisch, Franz Rendl, Jens Clausen
    Solving Graph Bisection Problems with Semidefinite Programming. [Citation Graph (0, 0)][DBLP]
    INFORMS Journal on Computing, 2000, v:12, n:3, pp:177-191 [Journal]
  13. Christoph Helmberg, Franz Rendl, Robert Weismantel
    A Semidefinite Programming Approach to the Quadratic Knapsack Problem. [Citation Graph (0, 0)][DBLP]
    J. Comb. Optim., 2000, v:4, n:2, pp:197-215 [Journal]
  14. Qing Zhao, Stefan E. Karisch, Franz Rendl, Henry Wolkowicz
    Semidefinite Programming Relaxations for the Quadratic Assignment Problem. [Citation Graph (0, 0)][DBLP]
    J. Comb. Optim., 1998, v:2, n:1, pp:71-109 [Journal]
  15. Julie Falkner, Franz Rendl, Henry Wolkowicz
    A computational study of graph partitioning. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1994, v:66, n:, pp:211-239 [Journal]
  16. Ilse Fischer, Gerald Gruber, Franz Rendl, Renata Sotirov
    Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and Equipartition. [Citation Graph (0, 0)][DBLP]
    Math. Program., 2006, v:105, n:2-3, pp:451-469 [Journal]
  17. Stefan E. Karisch, Franz Rendl
    Lower bounds for the quadratic assignment problem via triangle decompositions. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1995, v:71, n:, pp:137-151 [Journal]
  18. Monique Laurent, Svatopluk Poljak, Franz Rendl
    Connections between semidefinite relaxations of the max-cut and stable set problems. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1997, v:77, n:, pp:225-246 [Journal]
  19. A. Lisser, Franz Rendl
    Graph partitioning using linear and semidefinite programming. [Citation Graph (0, 0)][DBLP]
    Math. Program., 2003, v:95, n:1, pp:91-101 [Journal]
  20. Franz Rendl, Henry Wolkowicz
    Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1992, v:53, n:, pp:63-78 [Journal]
  21. Franz Rendl, Henry Wolkowicz
    A semidefinite framework for trust region subproblems with applications to large scale minimization. [Citation Graph (0, 0)][DBLP]
    Math. Program., 1997, v:77, n:, pp:273-299 [Journal]
  22. Igor Dukanovic, Franz Rendl
    Semidefinite programming relaxations for graph coloring and maximal clique problems. [Citation Graph (0, 0)][DBLP]
    Math. Program., 2007, v:109, n:2-3, pp:345-365 [Journal]
  23. Franz Rendl, Renata Sotirov
    Bounds for the quadratic assignment problem using the bundle method. [Citation Graph (0, 0)][DBLP]
    Math. Program., 2007, v:109, n:2-3, pp:505-524 [Journal]
  24. Franz Rendl, Giovanni Rinaldi, Angelika Wiegele
    A Branch and Bound Algorithm for Max-Cut Based on Combining Semidefinite and Polyhedral Relaxations. [Citation Graph (0, 0)][DBLP]
    IPCO, 2007, pp:295-309 [Conf]
  25. F. Rendl, M. Leclerc
    A multiply constrained matroid optimization problem. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1989, v:73, n:1-2, pp:207-212 [Journal]
  26. Franz Rendl, Gerhard J. Woeginger
    Reconstructing sets of orthogonal line segments in the plane. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1993, v:119, n:1-3, pp:167-174 [Journal]

  27. Node and edge relaxations of the Max-cut problem. [Citation Graph (, )][DBLP]


  28. A semidefinite programming-based heuristic for graph coloring. [Citation Graph (, )][DBLP]


Search in 0.561secs, Finished in 0.563secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002