Search the dblp DataBase
José Manuel Peña :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
José Manuel Peña , Víctor Robles , Oscar Marbán , María S. Pérez Bayesian Methods to Estimate Future Load in Web Farms. [Citation Graph (0, 0)][DBLP ] AWIC, 2004, pp:217-226 [Conf ] María S. Pérez , Alberto Sánchez , Pilar Herrero , Víctor Robles , José Manuel Peña Adapting the Weka Data Mining Toolkit to a Grid Based Environment. [Citation Graph (0, 0)][DBLP ] AWIC, 2005, pp:492-497 [Conf ] María S. Pérez , Alberto Sánchez , Víctor Robles , José Manuel Peña , Jemal H. Abawajy Cooperation model of a multiagent parallel file system for clusters. [Citation Graph (0, 0)][DBLP ] CCGRID, 2004, pp:595-601 [Conf ] José Manuel Peña , Sylvain Létourneau , Fazel Famili Application of Rough Sets Algorithms to Prediction of Aircraft Component Failure. [Citation Graph (0, 0)][DBLP ] IDA, 1999, pp:473-486 [Conf ] José Manuel Peña , Fazel Famili , Sylvain Létourneau Data mining to detect abnormal behavior in aerospace data. [Citation Graph (0, 0)][DBLP ] KDD, 2000, pp:390-397 [Conf ] María S. Pérez , Alberto Sánchez , José Manuel Peña , Víctor Robles , Jesús Carretero , Félix García Storage groups: A new approach for providing dynamic reconfiguration in data-based clusters. [Citation Graph (0, 0)][DBLP ] Parallel and Distributed Computing and Networks, 2004, pp:70-75 [Conf ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga Unsupervised Learning of Bayesian Networks Via Estimation of Distribution Algorithms. [Citation Graph (0, 0)][DBLP ] Probabilistic Graphical Models, 2002, pp:- [Conf ] Alberto Sánchez , María S. Pérez , Víctor Robles , José Manuel Peña , Pilar Herrero A Flexible Two-Level I/O Architecture for Grids. [Citation Graph (0, 0)][DBLP ] SAG, 2004, pp:50-58 [Conf ] Pedro Larrañaga , Ramon Etxeberria , José Antonio Lozano , José Manuel Peña Combinatonal Optimization by Learning and Simulation of Bayesian Networks. [Citation Graph (0, 0)][DBLP ] UAI, 2000, pp:343-352 [Conf ] Jens D. Nielsen , Tomás Kocka , José Manuel Peña On Local Optima in Learning Bayesian Networks. [Citation Graph (0, 0)][DBLP ] UAI, 2003, pp:435-442 [Conf ] Víctor Robles , Pedro Larrañaga , José Manuel Peña , Ernestina Menasalvas Ruiz , María S. Pérez , Vanessa Herves , Anita Wasilewska Bayesian network multi-classifiers for protein secondary structure prediction. [Citation Graph (0, 0)][DBLP ] Artificial Intelligence in Medicine, 2004, v:31, n:2, pp:117-136 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks. [Citation Graph (0, 0)][DBLP ] Evolutionary Computation, 2005, v:13, n:1, pp:43-66 [Journal ] María S. Pérez , Jesús Carretero , Félix García Carballeira , José Manuel Peña , Víctor Robles MAPFS: A flexible multiagent parallel file system for clusters. [Citation Graph (0, 0)][DBLP ] Future Generation Comp. Syst., 2006, v:22, n:5, pp:620-632 [Journal ] María S. Pérez , Alberto Sánchez , Víctor Robles , Pilar Herrero , José Manuel Peña Design and implementation of a data mining grid-aware architecture. [Citation Graph (0, 0)][DBLP ] Future Generation Comp. Syst., 2007, v:23, n:1, pp:42-47 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga Performance evaluation of compromise conditional Gaussian networks for data clustering. [Citation Graph (0, 0)][DBLP ] Int. J. Approx. Reasoning, 2001, v:28, n:1, pp:23-50 [Journal ] Ernestina Menasalvas Ruiz , Socorro Millán , José Manuel Peña , Michael Hadjimichael , Oscar Marbán Subsessions: A granular approach to click path analysis. [Citation Graph (0, 0)][DBLP ] Int. J. Intell. Syst., 2004, v:19, n:7, pp:619-637 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga Unsupervised Learning Of Bayesian Networks Via Estimation Of Distribution Algorithms: An Application To Gene Expression Data Clustering. [Citation Graph (0, 0)][DBLP ] International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2004, v:12, n:Supplement-1, pp:63-82 [Journal ] María S. Pérez , Alberto Sánchez , José Manuel Peña , Víctor Robles A new formalism for dynamic reconfiguration of data servers in a cluster. [Citation Graph (0, 0)][DBLP ] J. Parallel Distrib. Comput., 2005, v:65, n:10, pp:1134-1145 [Journal ] Pedro Larrañaga , José Antonio Lozano , José Manuel Peña , Iñaki Inza Editorial. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2005, v:59, n:3, pp:211-212 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction. [Citation Graph (0, 0)][DBLP ] Machine Learning, 2002, v:47, n:1, pp:63-89 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga , Iñaki Inza Dimensionality Reduction in Unsupervised Learning of Conditional Gaussian Networks. [Citation Graph (0, 0)][DBLP ] IEEE Trans. Pattern Anal. Mach. Intell., 2001, v:23, n:6, pp:590-603 [Journal ] Iñaki Inza , Pedro Larrañaga , Basilio Sierra , Ramon Etxeberria , José Antonio Lozano , José Manuel Peña Representing the behaviour of supervised classification learning algorithms by Bayesian networks. [Citation Graph (0, 0)][DBLP ] Pattern Recognition Letters, 1999, v:20, n:11-13, pp:1201-1209 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering. [Citation Graph (0, 0)][DBLP ] Pattern Recognition Letters, 2000, v:21, n:8, pp:779-786 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga An empirical comparison of four initialization methods for the K-Means algorithm. [Citation Graph (0, 0)][DBLP ] Pattern Recognition Letters, 1999, v:20, n:10, pp:1027-1040 [Journal ] José Manuel Peña , José Antonio Lozano , Pedro Larrañaga Learning Bayesian networks for clustering by means of constructive induction. [Citation Graph (0, 0)][DBLP ] Pattern Recognition Letters, 1999, v:20, n:11-13, pp:1219-1230 [Journal ] Using multiple offspring sampling to guide genetic algorithms to solve permutation problems. [Citation Graph (, )][DBLP ] Voronoi-initializated island models for solving real-coded deceptive problems. [Citation Graph (, )][DBLP ] Search in 0.044secs, Finished in 0.046secs