The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Tommi Jaakkola: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan
    Mean Field Theory for Sigmoid Belief Networks. [Citation Graph (1, 0)][DBLP]
    J. Artif. Intell. Res. (JAIR), 1996, v:4, n:, pp:61-76 [Journal]
  2. Chen-Hsiang Yeang, Tommi Jaakkola
    Time Series Analysis of Gene Expression and Location Data. [Citation Graph (0, 0)][DBLP]
    BIBE, 2003, pp:305-312 [Conf]
  3. Karen Sachs, Omar D. Perez, Dana Pe'er, Garry P. Nolan, David K. Gifford, Tommi Jaakkola, Douglas A. Lauffenburger
    Analysis of Signaling Pathways in Human T-Cells Using Bayesian Network Modeling of Single Cell Data. [Citation Graph (0, 0)][DBLP]
    CSB, 2004, pp:644- [Conf]
  4. Harald Steck, Tommi Jaakkola
    Predictive Discretization During Model Selection. [Citation Graph (0, 0)][DBLP]
    DAGM-Symposium, 2004, pp:1-8 [Conf]
  5. Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan
    Learning Without State-Estimation in Partially Observable Markovian Decision Processes. [Citation Graph (0, 0)][DBLP]
    ICML, 1994, pp:284-292 [Conf]
  6. Nathan Srebro, Tommi Jaakkola
    Weighted Low-Rank Approximations. [Citation Graph (0, 0)][DBLP]
    ICML, 2003, pp:720-727 [Conf]
  7. Ziv Bar-Joseph, David K. Gifford, Tommi Jaakkola
    Fast optimal leaf ordering for hierarchical clustering. [Citation Graph (0, 0)][DBLP]
    ISMB (Supplement of Bioinformatics), 2001, pp:22-29 [Conf]
  8. Tommi Jaakkola, Mark Diekhans, David Haussler
    Using the Fisher Kernel Method to Detect Remote Protein Homologies. [Citation Graph (0, 0)][DBLP]
    ISMB, 1999, pp:149-158 [Conf]
  9. Yuan Qi, Patrycja E. Missiuro, Ashish Kapoor, Craig P. Hunter, Tommi Jaakkola, David K. Gifford, Hui Ge
    Semi-supervised analysis of gene expression profiles for lineage-specific development in the Caenorhabditis elegans embryo. [Citation Graph (0, 0)][DBLP]
    ISMB (Supplement of Bioinformatics), 2006, pp:417-423 [Conf]
  10. Christopher M. Bishop, Neil D. Lawrence, Tommi Jaakkola, Michael I. Jordan
    Approximating Posterior Distributions in Belief Networks Using Mixtures. [Citation Graph (0, 0)][DBLP]
    NIPS, 1997, pp:- [Conf]
  11. Adrian Corduneanu, Tommi Jaakkola
    Distributed Information Regularization on Graphs. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  12. Brendan J. Frey, Relu Patrascu, Tommi Jaakkola, Jodi Moran
    Sequentially Fitting ``Inclusive'' Trees for Inference in Noisy-OR Networks. [Citation Graph (0, 0)][DBLP]
    NIPS, 2000, pp:493-499 [Conf]
  13. Tommi Jaakkola, David Haussler
    Exploiting Generative Models in Discriminative Classifiers. [Citation Graph (0, 0)][DBLP]
    NIPS, 1998, pp:487-493 [Conf]
  14. Tommi Jaakkola, Michael I. Jordan
    Recursive Algorithms for Approximating Probabilities in Graphical Models. [Citation Graph (0, 0)][DBLP]
    NIPS, 1996, pp:487-493 [Conf]
  15. Tommi Jaakkola, Michael I. Jordan, Satinder P. Singh
    Convergence of Stochastic Iterative Dynamic Programming Algorithms. [Citation Graph (0, 0)][DBLP]
    NIPS, 1993, pp:703-710 [Conf]
  16. Tommi Jaakkola, Marina Meila, Tony Jebara
    Maximum Entropy Discrimination. [Citation Graph (0, 0)][DBLP]
    NIPS, 1999, pp:470-476 [Conf]
  17. Tommi Jaakkola, Hava T. Siegelmann
    Active Information Retrieval. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:777-784 [Conf]
  18. Tommi Jaakkola, Satinder P. Singh, Michael I. Jordan
    Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. [Citation Graph (0, 0)][DBLP]
    NIPS, 1994, pp:345-352 [Conf]
  19. Tommi Jaakkola, Lawrence K. Saul, Michael I. Jordan
    Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks. [Citation Graph (0, 0)][DBLP]
    NIPS, 1995, pp:528-534 [Conf]
  20. Claire Monteleoni, Tommi Jaakkola
    Online Learning of Non-stationary Sequences. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  21. Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan
    Reinforcement Learning with Soft State Aggregation. [Citation Graph (0, 0)][DBLP]
    NIPS, 1994, pp:361-368 [Conf]
  22. Nathan Srebro, Noga Alon, Tommi Jaakkola
    Generalization Error Bounds for Collaborative Prediction with Low-Rank Matrices. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  23. Nathan Srebro, Tommi Jaakkola
    Linear Dependent Dimensionality Reduction. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  24. Nathan Srebro, Jason D. M. Rennie, Tommi Jaakkola
    Maximum-Margin Matrix Factorization. [Citation Graph (0, 0)][DBLP]
    NIPS, 2004, pp:- [Conf]
  25. Harald Steck, Tommi Jaakkola
    On the Dirichlet Prior and Bayesian Regularization. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:697-704 [Conf]
  26. Harald Steck, Tommi Jaakkola
    Bias-Corrected Bootstrap and Model Uncertainty. [Citation Graph (0, 0)][DBLP]
    NIPS, 2003, pp:- [Conf]
  27. Martin Szummer, Tommi Jaakkola
    Kernel Expansions with Unlabeled Examples. [Citation Graph (0, 0)][DBLP]
    NIPS, 2000, pp:626-632 [Conf]
  28. Martin Szummer, Tommi Jaakkola
    Partially labeled classification with Markov random walks. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:945-952 [Conf]
  29. Martin Szummer, Tommi Jaakkola
    Information Regularization with Partially Labeled Data. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:1025-1032 [Conf]
  30. Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky
    Tree-based reparameterization for approximate inference on loopy graphs. [Citation Graph (0, 0)][DBLP]
    NIPS, 2001, pp:1001-1008 [Conf]
  31. Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky
    Exact MAP Estimates by (Hyper)tree Agreement. [Citation Graph (0, 0)][DBLP]
    NIPS, 2002, pp:809-816 [Conf]
  32. Alexander J. Hartemink, David K. Gifford, Tommi Jaakkola, Richard A. Young
    Using Graphical Models and Genomic Expression Data to Statistically Validate Models of Genetic Regulatory Networks. [Citation Graph (0, 0)][DBLP]
    Pacific Symposium on Biocomputing, 2001, pp:422-433 [Conf]
  33. Alexander J. Hartemink, David K. Gifford, Tommi Jaakkola, Richard A. Young
    Combining Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models. [Citation Graph (0, 0)][DBLP]
    Pacific Symposium on Biocomputing, 2002, pp:437-449 [Conf]
  34. Ziv Bar-Joseph, Georg Gerber, David K. Gifford, Tommi Jaakkola, Itamar Simon
    A new approach to analyzing gene expression time series data. [Citation Graph (0, 0)][DBLP]
    RECOMB, 2002, pp:39-48 [Conf]
  35. Chen-Hsiang Yeang, Tommi Jaakkola
    Physical network models and multi-source data integration. [Citation Graph (0, 0)][DBLP]
    RECOMB, 2003, pp:312-321 [Conf]
  36. Chen-Hsiang Yeang, Tommi Jaakkola
    Modeling the Combinatorial Functions of Multiple Transcription Factors. [Citation Graph (0, 0)][DBLP]
    RECOMB, 2005, pp:506-521 [Conf]
  37. Jason D. M. Rennie, Tommi Jaakkola
    Using term informativeness for named entity detection. [Citation Graph (0, 0)][DBLP]
    SIGIR, 2005, pp:353-360 [Conf]
  38. Adrian Corduneanu, Tommi Jaakkola
    Continuation Methods for Mixing Heterogenous Sources. [Citation Graph (0, 0)][DBLP]
    UAI, 2002, pp:111-118 [Conf]
  39. Adrian Corduneanu, Tommi Jaakkola
    On Information Regularization. [Citation Graph (0, 0)][DBLP]
    UAI, 2003, pp:151-158 [Conf]
  40. Tommi Jaakkola, Michael I. Jordan
    Computing upper and lower bounds on likelihoods in intractable networks. [Citation Graph (0, 0)][DBLP]
    UAI, 1996, pp:340-348 [Conf]
  41. Tony Jebara, Tommi Jaakkola
    Feature Selection and Dualities in Maximum Entropy Discrimination. [Citation Graph (0, 0)][DBLP]
    UAI, 2000, pp:291-300 [Conf]
  42. Marina Meila, Tommi Jaakkola
    Tractable Bayesian Learning of Tree Belief Networks. [Citation Graph (0, 0)][DBLP]
    UAI, 2000, pp:380-388 [Conf]
  43. Harald Steck, Tommi Jaakkola
    Unsupervised Active Learning in Large Domains. [Citation Graph (0, 0)][DBLP]
    UAI, 2002, pp:469-476 [Conf]
  44. Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky
    A New Class of upper Bounds on the Log Partition Function. [Citation Graph (0, 0)][DBLP]
    UAI, 2002, pp:536-543 [Conf]
  45. Ziv Bar-Joseph, Erik D. Demaine, David K. Gifford, Angèle M. Hamel, Tommi Jaakkola, Nathan Srebro
    K-ary Clustering with Optimal Leaf Ordering for Gene Expression Data. [Citation Graph (0, 0)][DBLP]
    WABI, 2002, pp:506-520 [Conf]
  46. Ziv Bar-Joseph, Erik D. Demaine, David K. Gifford, Nathan Srebro, Angèle M. Hamel, Tommi Jaakkola
    K-ary Clustering with Optimal Leaf Ordering for Gene Expression Data. [Citation Graph (0, 0)][DBLP]
    Bioinformatics, 2003, v:19, n:9, pp:1070-1078 [Journal]
  47. Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan
    Mean Field Theory for Sigmoid Belief Networks [Citation Graph (0, 0)][DBLP]
    CoRR, 1996, v:0, n:, pp:- [Journal]
  48. Alexander J. Hartemink, David K. Gifford, Tommi Jaakkola, Richard A. Young
    Bayesian Methods for Elucidating Genetic Regulatory Networks. [Citation Graph (0, 0)][DBLP]
    IEEE Intelligent Systems, 2002, v:17, n:2, pp:37-43 [Journal]
  49. Chen-Hsiang Yeang, Tommi Jaakkola
    Time Series Analysis of Gene Expression and Location Data. [Citation Graph (0, 0)][DBLP]
    International Journal on Artificial Intelligence Tools, 2005, v:14, n:5, pp:755-770 [Journal]
  50. Tommi Jaakkola, Michael I. Jordan
    Variational Probabilistic Inference and the QMR-DT Network. [Citation Graph (0, 0)][DBLP]
    J. Artif. Intell. Res. (JAIR), 1999, v:10, n:, pp:291-322 [Journal]
  51. Ziv Bar-Joseph, Georg Gerber, David K. Gifford, Tommi Jaakkola, Itamar Simon
    Continuous Representations of Time-Series Gene Expression Data. [Citation Graph (0, 0)][DBLP]
    Journal of Computational Biology, 2003, v:10, n:3/4, pp:341-356 [Journal]
  52. Tommi Jaakkola, Mark Diekhans, David Haussler
    A Discriminative Framework for Detecting Remote Protein Homologies. [Citation Graph (0, 0)][DBLP]
    Journal of Computational Biology, 2000, v:7, n:1-2, pp:95-114 [Journal]
  53. Chen-Hsiang Yeang, Trey Ideker, Tommi Jaakkola
    Physical Network Models. [Citation Graph (0, 0)][DBLP]
    Journal of Computational Biology, 2004, v:11, n:2/3, pp:243-262 [Journal]
  54. Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, Lawrence K. Saul
    An Introduction to Variational Methods for Graphical Models. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 1999, v:37, n:2, pp:183-233 [Journal]
  55. Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, Csaba Szepesvári
    Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms. [Citation Graph (0, 0)][DBLP]
    Machine Learning, 2000, v:38, n:3, pp:287-308 [Journal]
  56. Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky
    Tree-based reparameterization framework for analysis of sum-product and related algorithms. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 2003, v:49, n:5, pp:1120-1146 [Journal]
  57. Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky
    A new class of upper bounds on the log partition function. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 2005, v:51, n:7, pp:2313-2335 [Journal]
  58. Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky
    MAP estimation via agreement on trees: message-passing and linear programming. [Citation Graph (0, 0)][DBLP]
    IEEE Transactions on Information Theory, 2005, v:51, n:11, pp:3697-3717 [Journal]
  59. Marina Meila, Tommi Jaakkola
    Tractable Bayesian learning of tree belief networks. [Citation Graph (0, 0)][DBLP]
    Statistics and Computing, 2006, v:16, n:1, pp:77-92 [Journal]
  60. Yuan (Alan) Qi, Tommi Jaakkola
    Parameter Expanded Variational Bayesian Methods. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:1097-1104 [Conf]
  61. Luis Pérez-Breva, Luis E. Ortiz, Chen-Hsiang Yeang, Tommi Jaakkola
    Game Theoretic Algorithms for Protein-DNA binding. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:1081-1088 [Conf]
  62. Amir Globerson, Tommi Jaakkola
    Approximate inference using planar graph decomposition. [Citation Graph (0, 0)][DBLP]
    NIPS, 2006, pp:473-480 [Conf]

  63. Learning Efficiently with Approximate Inference via Dual Losses. [Citation Graph (, )][DBLP]


  64. New Outer Bounds on the Marginal Polytope. [Citation Graph (, )][DBLP]


  65. Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations. [Citation Graph (, )][DBLP]


  66. Clusters and Coarse Partitions in LP Relaxations. [Citation Graph (, )][DBLP]


  67. Tightening LP Relaxations for MAP using Message Passing. [Citation Graph (, )][DBLP]


  68. MAP estimation via agreement on (hyper)trees: Message-passing and linear programming [Citation Graph (, )][DBLP]


Search in 0.008secs, Finished in 0.011secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002