|
Search the dblp DataBase
Johannes Waldmann:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
Publications of Author
- Jörg Endrullis, Johannes Waldmann, Hans Zantema
Matrix Interpretations for Proving Termination of Term Rewriting. [Citation Graph (0, 0)][DBLP] IJCAR, 2006, pp:574-588 [Conf]
- Dieter Hofbauer, Johannes Waldmann
Deleting String Rewriting Systems Preserve Regularity. [Citation Graph (0, 0)][DBLP] Developments in Language Theory, 2003, pp:337-348 [Conf]
- Gundula Niemann, Johannes Waldmann
Some Regular Languages That Are Church-Rosser Congruential. [Citation Graph (0, 0)][DBLP] Developments in Language Theory, 2001, pp:330-339 [Conf]
- Alfons Geser, Dieter Hofbauer, Johannes Waldmann
Match-Bounded String Rewriting Systems. [Citation Graph (0, 0)][DBLP] MFCS, 2003, pp:449-459 [Conf]
- Dieter Hofbauer, Johannes Waldmann
Termination of String Rewriting with Matrix Interpretations. [Citation Graph (0, 0)][DBLP] RTA, 2006, pp:328-342 [Conf]
- Alfons Geser, Dieter Hofbauer, Johannes Waldmann, Hans Zantema
On Tree Automata that Certify Termination of Left-Linear Term Rewriting Systems. [Citation Graph (0, 0)][DBLP] RTA, 2005, pp:353-367 [Conf]
- Johannes Waldmann
Rewrite Games. [Citation Graph (0, 0)][DBLP] RTA, 2002, pp:144-158 [Conf]
- Johannes Waldmann
Matchbox: A Tool for Match-Bounded String Rewriting. [Citation Graph (0, 0)][DBLP] RTA, 2004, pp:85-94 [Conf]
- Johannes Waldmann
Normalization of S-Terms is Decidable. [Citation Graph (0, 0)][DBLP] RTA, 1998, pp:138-150 [Conf]
- Alfons Geser, Dieter Hofbauer, Johannes Waldmann, Hans Zantema
Finding Finite Automata That Certify Termination of String Rewriting. [Citation Graph (0, 0)][DBLP] CIAA, 2004, pp:134-145 [Conf]
- Alfons Geser, Dieter Hofbauer, Johannes Waldmann
Match-Bounded String Rewriting Systems. [Citation Graph (0, 0)][DBLP] Appl. Algebra Eng. Commun. Comput., 2004, v:15, n:3-4, pp:149-171 [Journal]
- Johannes Waldmann
The Combinator S. [Citation Graph (0, 0)][DBLP] Inf. Comput., 2000, v:159, n:1-2, pp:2-21 [Journal]
- Alfons Geser, Dieter Hofbauer, Johannes Waldmann, Hans Zantema
Finding finite automata that certify termination of string rewriting systems. [Citation Graph (0, 0)][DBLP] Int. J. Found. Comput. Sci., 2005, v:16, n:3, pp:471-486 [Journal]
- Dieter Hofbauer, Johannes Waldmann
Termination of {aa->bc, bb->ac, cc->ab}. [Citation Graph (0, 0)][DBLP] Inf. Process. Lett., 2006, v:98, n:4, pp:156-158 [Journal]
- Alfons Geser, Dieter Hofbauer, Johannes Waldmann
Termination Proofs for String Rewriting Systems via Inverse Match-Bounds. [Citation Graph (0, 0)][DBLP] J. Autom. Reasoning, 2005, v:34, n:4, pp:365-385 [Journal]
- Dieter Hofbauer, Johannes Waldmann
Deleting string rewriting systems preserve regularity. [Citation Graph (0, 0)][DBLP] Theor. Comput. Sci., 2004, v:327, n:3, pp:301-317 [Journal]
- Hans Zantema, Johannes Waldmann
Termination by Quasi-periodic Interpretations. [Citation Graph (0, 0)][DBLP] RTA, 2007, pp:404-418 [Conf]
- Alfons Geser, Dieter Hofbauer, Johannes Waldmann, Hans Zantema
On tree automata that certify termination of left-linear term rewriting systems. [Citation Graph (0, 0)][DBLP] Inf. Comput., 2007, v:205, n:4, pp:512-534 [Journal]
Complexity Analysis of Term Rewriting Based on Matrix and Context Dependent Interpretations. [Citation Graph (, )][DBLP]
Arctic Termination ...Below Zero. [Citation Graph (, )][DBLP]
Local Termination. [Citation Graph (, )][DBLP]
Automatic Termination. [Citation Graph (, )][DBLP]
Polynomially Bounded Matrix Interpretations. [Citation Graph (, )][DBLP]
Weighted Automata Define a Hierarchy of Terminating String Rewriting Systems. [Citation Graph (, )][DBLP]
Max/Plus Tree Automata for Termination of Term Rewriting. [Citation Graph (, )][DBLP]
Local Termination: theory and practice [Citation Graph (, )][DBLP]
Search in 0.005secs, Finished in 0.006secs
|