The SCEAS System
| |||||||

## Search the dblp DataBase
Mark van Hoeij:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- Mark van Hoeij
**Factoring Polynomials and 0-1 Vectors.**[Citation Graph (0, 0)][DBLP] CaLC, 2001, pp:45-50 [Conf] - Sergei A. Abramov, Mark van Hoeij
**A Method for the Integration of Solutions of Ore Equations.**[Citation Graph (0, 0)][DBLP] ISSAC, 1997, pp:172-175 [Conf] - Sergei A. Abramov, Mark van Hoeij
**Desingularization of Linear Difference Operators with Polynomial Coefficients.**[Citation Graph (0, 0)][DBLP] ISSAC, 1999, pp:269-275 [Conf] - Reinhold Burger, George Labahn, Mark van Hoeij
**Closed form solutions of linear odes having elliptic function coefficients.**[Citation Graph (0, 0)][DBLP] ISSAC, 2004, pp:58-64 [Conf] - Robert M. Corless, Mark Giesbrecht, Mark van Hoeij, Ilias S. Kotsireas, Stephen M. Watt
**Towards factoring bivariate approximate polynomials.**[Citation Graph (0, 0)][DBLP] ISSAC, 2001, pp:85-92 [Conf] - Mark van Hoeij
**Computing Parameterizations of Rational Algebraic Curves.**[Citation Graph (0, 0)][DBLP] ISSAC, 1994, pp:187-190 [Conf] - Mark van Hoeij
**An Algorithm for Computing the Weierstrass Normal Form.**[Citation Graph (0, 0)][DBLP] ISSAC, 1995, pp:90-95 [Conf] - Mark van Hoeij
**Rational Solutions of the Mixed Differential Equation and Its Application to Factorization of Differential Operators.**[Citation Graph (0, 0)][DBLP] ISSAC, 1996, pp:219-225 [Conf] - Mark van Hoeij
**Rational Solutions of Linear Difference Equations.**[Citation Graph (0, 0)][DBLP] ISSAC, 1998, pp:120-123 [Conf] - Mark van Hoeij, Michael B. Monagan
**A modular GCD algorithm over number fields presented with multiple extensions.**[Citation Graph (0, 0)][DBLP] ISSAC, 2002, pp:109-116 [Conf] - Mark van Hoeij, Michael B. Monagan
**Algorithms for polynomial GCD computation over algebraic function fields.**[Citation Graph (0, 0)][DBLP] ISSAC, 2004, pp:297-304 [Conf] - Mark van Hoeij, Jacques-Arthur Weil
**Solving second order linear differential equations with Klein's theorem.**[Citation Graph (0, 0)][DBLP] ISSAC, 2005, pp:340-347 [Conf] - Sergei A. Abramov, Moulay A. Barkatou, Mark van Hoeij
**Apparent singularities of linear difference equations with polynomial coefficients.**[Citation Graph (0, 0)][DBLP] Appl. Algebra Eng. Commun. Comput., 2006, v:17, n:2, pp:117-133 [Journal] - Thomas Cluzeau, Mark van Hoeij
**Computing Hypergeometric Solutions of Linear Recurrence Equations.**[Citation Graph (0, 0)][DBLP] Appl. Algebra Eng. Commun. Comput., 2006, v:17, n:2, pp:83-115 [Journal] - Thomas Cluzeau, Mark van Hoeij
**A modular algorithm for computing the exponential solutions of a linear differential operator.**[Citation Graph (0, 0)][DBLP] J. Symb. Comput., 2004, v:38, n:3, pp:1043-1076 [Journal] - Mark van Hoeij
**An Algorithm for Computing an Integral Basis in an Algebraic Function Field.**[Citation Graph (0, 0)][DBLP] J. Symb. Comput., 1994, v:18, n:4, pp:353-363 [Journal] - Mark van Hoeij
**Rational Parametrizations of Algebraic Curves Using a Canonical Divisor.**[Citation Graph (0, 0)][DBLP] J. Symb. Comput., 1997, v:23, n:2/3, pp:209-227 [Journal] - Mark van Hoeij
**Formal Solutions and Factorization of Differential Operators with Power Series Coefficients.**[Citation Graph (0, 0)][DBLP] J. Symb. Comput., 1997, v:24, n:1, pp:1-30 [Journal] - Mark van Hoeij
**Factorization of Differential Operators with Rational Functions Coefficients.**[Citation Graph (0, 0)][DBLP] J. Symb. Comput., 1997, v:24, n:5, pp:537-561 [Journal] - Mark van Hoeij, Jean-François Ragot, Felix Ulmer, Jacques-Arthur Weil
**Liouvillian Solutions of Linear Differential Equations of Order Three and Higher.**[Citation Graph (0, 0)][DBLP] J. Symb. Comput., 1999, v:28, n:4-5, pp:589-609 [Journal] - Bernard Deconinck, Matthias Heil, Alexander I. Bobenko, Mark van Hoeij, Markus Schmies
**Computing Riemann theta functions.**[Citation Graph (0, 0)][DBLP] Math. Comput., 2004, v:73, n:247, pp:1417-1442 [Journal] - Mark van Hoeij
**Solving third order linear differential equations in terms of second order equations.**[Citation Graph (0, 0)][DBLP] ISSAC, 2007, pp:355-360 [Conf] **Solving differential equations in terms of bessel functions.**[Citation Graph (, )][DBLP]**Approximate bivariate factorization: a geometric viewpoint.**[Citation Graph (, )][DBLP]**Liouvillian solutions of irreducible linear difference equations.**[Citation Graph (, )][DBLP]**Gradual Sub-lattice Reduction and a New Complexity for Factoring Polynomials.**[Citation Graph (, )][DBLP]**Gradual sub-lattice reduction and a new complexity for factoring polynomials**[Citation Graph (, )][DBLP]
Search in 0.960secs, Finished in 0.961secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |