Search the dblp DataBase
Philip K. Chan :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Philip K. Chan , Salvatore J. Stolfo Experiments on Multi-Strategy Learning by Meta-Learning. [Citation Graph (3, 0)][DBLP ] CIKM, 1993, pp:314-323 [Conf ] Christopher J. Matheus , Philip K. Chan , Gregory Piatetsky-Shapiro Systems for Knowledge Discovery in Databases. [Citation Graph (3, 13)][DBLP ] IEEE Trans. Knowl. Data Eng., 1993, v:5, n:6, pp:903-913 [Journal ] Philip K. Chan , Salvatore J. Stolfo On the Accuracy of Meta-Learning for Scalable Data Mining. [Citation Graph (2, 0)][DBLP ] J. Intell. Inf. Syst., 1997, v:8, n:1, pp:5-28 [Journal ] Philip K. Chan , Salvatore J. Stolfo Learning Arbiter and Combiner Trees from Partitioned Data for Scaling Machine Learning. [Citation Graph (1, 0)][DBLP ] KDD, 1995, pp:39-44 [Conf ] Philip K. Chan , Salvatore J. Stolfo Sharing Learned Models among Remote Database Partitions by Local Meta-Learning. [Citation Graph (1, 0)][DBLP ] KDD, 1996, pp:2-7 [Conf ] Philip K. Chan , Salvatore J. Stolfo Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection. [Citation Graph (1, 0)][DBLP ] KDD, 1998, pp:164-168 [Conf ] Salvatore J. Stolfo , Andreas L. Prodromidis , Shelley Tselepis , Wenke Lee , Dave W. Fan , Philip K. Chan JAM: Java Agents for Meta-Learning over Distributed Databases. [Citation Graph (1, 0)][DBLP ] KDD, 1997, pp:74-81 [Conf ] Gaurav Tandon , Philip K. Chan Learning Useful System Call Attributes for Anomaly Detection. [Citation Graph (0, 0)][DBLP ] FLAIRS Conference, 2005, pp:405-411 [Conf ] Philip K. Chan , Matthew V. Mahoney Modeling Multiple Time Series for Anomaly Detection. [Citation Graph (0, 0)][DBLP ] ICDM, 2005, pp:90-97 [Conf ] Wei Fan , Matthew Miller , Salvatore J. Stolfo , Wenke Lee , Philip K. Chan Using Artificial Anomalies to Detect Unknown and Known Network Intrusions. [Citation Graph (0, 0)][DBLP ] ICDM, 2001, pp:123-130 [Conf ] Matthew V. Mahoney , Philip K. Chan Learning Rules for Anomaly Detection of Hostile Network Traffic. [Citation Graph (0, 0)][DBLP ] ICDM, 2003, pp:601-604 [Conf ] Philip K. Chan Inductive Learning with BCT. [Citation Graph (0, 0)][DBLP ] ML, 1989, pp:104-108 [Conf ] Philip K. Chan , Salvatore J. Stolfo A Comparative Evaluation of Voting and Meta-learning on Partitioned Data. [Citation Graph (0, 0)][DBLP ] ICML, 1995, pp:90-98 [Conf ] Wei Fan , Salvatore J. Stolfo , Junxin Zhang , Philip K. Chan AdaCost: Misclassification Cost-Sensitive Boosting. [Citation Graph (0, 0)][DBLP ] ICML, 1999, pp:97-105 [Conf ] Hyoung-rae Kim , Philip K. Chan Identifying Variable-Length Meaningful Phrases with Correlation Functions. [Citation Graph (0, 0)][DBLP ] ICTAI, 2004, pp:30-38 [Conf ] Gaurav Tandon , Debasis Mitra , Philip K. Chan Motif-Oriented Representation of Sequences for a Host-Based Intrusion Detection System. [Citation Graph (0, 0)][DBLP ] IEA/AIE, 2004, pp:605-615 [Conf ] Philip K. Chan , Salvatore J. Stolfo Toward Multi-Strategy Parallel & Distributed Learning in Sequence Analysis. [Citation Graph (0, 0)][DBLP ] ISMB, 1993, pp:65-73 [Conf ] Hyoung R. Kim , Philip K. Chan Learning implicit user interest hierarchy for context in personalization. [Citation Graph (0, 0)][DBLP ] Intelligent User Interfaces, 2003, pp:101-108 [Conf ] Philip K. Chan Constructing Web User Profiles: A non-invasive Learning Approach. [Citation Graph (0, 0)][DBLP ] WEBKDD, 1999, pp:39-55 [Conf ] Matthew V. Mahoney , Philip K. Chan Learning nonstationary models of normal network traffic for detecting novel attacks. [Citation Graph (0, 0)][DBLP ] KDD, 2002, pp:376-385 [Conf ] Hyoung-rae Kim , Philip K. Chan Personalized Search Results with User Interest Hierarchies Learnt from Bookmarks. [Citation Graph (0, 0)][DBLP ] WEBKDD, 2005, pp:158-176 [Conf ] Matthew V. Mahoney , Philip K. Chan An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection. [Citation Graph (0, 0)][DBLP ] RAID, 2003, pp:220-237 [Conf ] Gaurav Tandon , Philip Chan , Debasis Mitra MORPHEUS: motif oriented representations to purge hostile events from unlabeled sequences. [Citation Graph (0, 0)][DBLP ] VizSEC, 2004, pp:16-25 [Conf ] Hyoung-rae Kim , Philip K. Chan Implicit Indicators for Interesting Web Pages. [Citation Graph (0, 0)][DBLP ] WEBIST, 2005, pp:270-277 [Conf ] Douglas H. Fisher , Philip K. Chan Statistical guidance in symbolic learning. [Citation Graph (0, 0)][DBLP ] Ann. Math. Artif. Intell., 1990, v:2, n:, pp:135-147 [Journal ] Gaurav Tandon , Philip K. Chan On the Learning of System Call Attributes for Host-based Anomaly Detection. [Citation Graph (0, 0)][DBLP ] International Journal on Artificial Intelligence Tools, 2006, v:15, n:6, pp:875-892 [Journal ] Philip K. Chan , Richard Lippmann Machine Learning for Computer Security. [Citation Graph (0, 0)][DBLP ] Journal of Machine Learning Research, 2006, v:6, n:, pp:2669-2672 [Journal ] Salvatore J. Stolfo , Ouri Wolfson , Philip K. Chan , Hasanat M. Dewan , Leland Woodbury , Jason S. Glazier , David Ohsie PARULE: Parallel Rule Processing Using Meta-rules for Redaction. [Citation Graph (0, 0)][DBLP ] J. Parallel Distrib. Comput., 1991, v:13, n:4, pp:366-382 [Journal ] Wei Fan , Matthew Miller , Salvatore J. Stolfo , Wenke Lee , Philip K. Chan Using artificial anomalies to detect unknown and known network intrusions. [Citation Graph (0, 0)][DBLP ] Knowl. Inf. Syst., 2004, v:6, n:5, pp:507-527 [Journal ] Philip K. Chan , Salvatore J. Stolfo , David Wolpert Guest Editors' Introduction. [Citation Graph (0, 0)][DBLP ] Machine Learning, 1999, v:36, n:1-2, pp:5-7 [Journal ] Salvatore J. Stolfo , Wenke Lee , Philip K. Chan , Wei Fan , Eleazar Eskin Data Mining-based Intrusion Detectors: An Overview of the Columbia IDS Project. [Citation Graph (0, 0)][DBLP ] SIGMOD Record, 2001, v:30, n:4, pp:5-14 [Journal ] Gaurav Tandon , Philip K. Chan Weighting versus pruning in rule validation for detecting network and host anomalies. [Citation Graph (0, 0)][DBLP ] KDD, 2007, pp:697-706 [Conf ] Incrementally Learning Rules for Anomaly Detection. [Citation Graph (, )][DBLP ] Tracking User Mobility to Detect Suspicious Behavior. [Citation Graph (, )][DBLP ] Learning implicit user interest hierarchy for context in personalization. [Citation Graph (, )][DBLP ] Search in 0.006secs, Finished in 0.007secs