The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Frédéric Mesnard: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Frédéric Mesnard, Sébastien Hoarau, Alexandra Maillard
    CLP(chi) for Proving Program Properties. [Citation Graph (0, 0)][DBLP]
    Frontiers of Combining Systems (FroCos), 1996, pp:321-338 [Conf]
  2. Vitaly Lagoon, Frédéric Mesnard, Peter J. Stuckey
    Termination Analysis with Types Is More Accurate. [Citation Graph (0, 0)][DBLP]
    ICLP, 2003, pp:254-268 [Conf]
  3. Frédéric Mesnard
    Inferring Left-terminating Classes of Queries for Constraint Logic Programs. [Citation Graph (0, 0)][DBLP]
    JICSLP, 1996, pp:7-21 [Conf]
  4. Serge Colin, Frédéric Mesnard, Antoine Rauzy
    Un module Prolog de mu-calcul booléen: une réalisation par BDD. [Citation Graph (0, 0)][DBLP]
    JFPLC, 1999, pp:23-38 [Conf]
  5. Sébastien Hoarau, Frédéric Mesnard
    PLC(Bool) pour la détection de variables numériques bornées. [Citation Graph (0, 0)][DBLP]
    JFPLC, 1996, pp:169-184 [Conf]
  6. Sébastien Hoarau, Frédéric Mesnard
    Inférer et compiler la terminaison des programmes logiques avec contraintes. [Citation Graph (0, 0)][DBLP]
    JFPLC, 1998, pp:269-286 [Conf]
  7. Frédéric Mesnard, Sébastien Hoarau
    Contrôle dynamique de la résolution pour les programmes logiques avec contraintes. [Citation Graph (0, 0)][DBLP]
    JFPLC, 1995, pp:259-273 [Conf]
  8. Frédéric Mesnard, Jean-Gabriel Ganascia
    CLP(X) for proving prgram properties. [Citation Graph (0, 0)][DBLP]
    JFPL, 1992, pp:328-0 [Conf]
  9. Frédéric Mesnard, Ulrich Neumerkel, Étienne Payet
    cTI: un outil pour l'inférence de conditions optimales de terminasion pour Prolog. [Citation Graph (0, 0)][DBLP]
    JFPLC, 2001, pp:271-286 [Conf]
  10. Frédéric Mesnard, Étienne Payet, Ulrich Neumerkel
    Non-Termination Inference for Optimal Termination Conditions of Logic Programs. [Citation Graph (0, 0)][DBLP]
    JFPLC, 2002, pp:87-0 [Conf]
  11. Frédéric Mesnard, Antoine Rauzy
    Le iota-calcul: un langage de contraintes d'ordre supérieur. [Citation Graph (0, 0)][DBLP]
    JFPLC, 2000, pp:241-0 [Conf]
  12. Étienne Payet, Frédéric Mesnard
    Inférence de non-terminaison pour les programmes logiques avec contraintes. [Citation Graph (0, 0)][DBLP]
    JFPLC, 2004, pp:- [Conf]
  13. Frédéric Mesnard
    Approximations entre langages de programmation logique avec contraintes. [Citation Graph (0, 0)][DBLP]
    JFPL, 1993, pp:319-341 [Conf]
  14. Frédéric Mesnard
    Étude de la terminaison des programmes logiques avec contraintes au moyen d'approximations. [Citation Graph (0, 0)][DBLP]
    JFPLC, 1994, pp:205-0 [Conf]
  15. Sébastien Hoarau, Frédéric Mesnard
    Inferring and Compiling Termination for Constraint Logic Programs. [Citation Graph (0, 0)][DBLP]
    LOPSTR, 1998, pp:240-254 [Conf]
  16. Frédéric Mesnard
    Towards Automatic Control for CLP(x) Programs. [Citation Graph (0, 0)][DBLP]
    LOPSTR, 1995, pp:106-119 [Conf]
  17. Alexander Serebrenik, Frédéric Mesnard
    On Termination of Binary CLP Programs. [Citation Graph (0, 0)][DBLP]
    LOPSTR, 2004, pp:231-244 [Conf]
  18. Étienne Payet, Frédéric Mesnard
    An Improved Non-Termination Criterion for Binary Constraint Logic Programs. [Citation Graph (0, 0)][DBLP]
    WLPE, 2005, pp:46-60 [Conf]
  19. Frédéric Mesnard, Jean-Gabriel Ganascia
    CLP(Q) for Proving Interargument Relations. [Citation Graph (0, 0)][DBLP]
    META, 1992, pp:308-320 [Conf]
  20. Ulrich Neumerkel, Frédéric Mesnard
    Localizing and Explaining Reasons for Non-terminating Logic Programs with Failure-Slices. [Citation Graph (0, 0)][DBLP]
    PPDP, 1999, pp:328-342 [Conf]
  21. Frédéric Mesnard, Jean-Gabriel Ganascia
    A propos du contrôle de la résolution. [Citation Graph (0, 0)][DBLP]
    JTASPEFT/WSA, 1991, pp:125-131 [Conf]
  22. Frédéric Mesnard, Marianne Morillon
    Automatic Generation of Valid Linear Measures for CLP(Q) Programs. [Citation Graph (0, 0)][DBLP]
    WSA, 1992, pp:29-34 [Conf]
  23. Frédéric Mesnard, Ulrich Neumerkel
    Applying Static Analysis Techniques for Inferring Termination Conditions of Logic Programs. [Citation Graph (0, 0)][DBLP]
    SAS, 2001, pp:93-110 [Conf]
  24. Frédéric Mesnard, Étienne Payet, Ulrich Neumerkel
    Detecting Optimal Termination Conditions of Logic Programs. [Citation Graph (0, 0)][DBLP]
    SAS, 2002, pp:509-526 [Conf]
  25. Étienne Payet, Frédéric Mesnard
    Non-termination Inference for Constraint Logic Programs. [Citation Graph (0, 0)][DBLP]
    SAS, 2004, pp:377-392 [Conf]
  26. Serge Burckel, Sébastien Hoarau, Frédéric Mesnard, Ulrich Neumerkel
    cTI: Bottom-Up Termination Inference for Logic Programs. [Citation Graph (0, 0)][DBLP]
    15. WLP, 2000, pp:123-134 [Conf]
  27. Stefan Kral, Frédéric Mesnard, Ulrich Neumerkel
    Slicing zur Fehlersuche in Logikprogrammen. [Citation Graph (0, 0)][DBLP]
    WLP, 2000, pp:241-243 [Conf]
  28. Étienne Payet, Frédéric Mesnard
    A Generalization of the Lifting Lemma for Logic Programming [Citation Graph (0, 0)][DBLP]
    CoRR, 2002, v:0, n:, pp:- [Journal]
  29. Frédéric Mesnard, Roberto Bagnara
    cTI: A constraint-based termination inference tool for ISO-Prolog [Citation Graph (0, 0)][DBLP]
    CoRR, 2003, v:0, n:, pp:- [Journal]
  30. Florence Benoy, Andy King, Frédéric Mesnard
    Computing Convex Hulls with a Linear Solver [Citation Graph (0, 0)][DBLP]
    CoRR, 2003, v:0, n:, pp:- [Journal]
  31. Étienne Payet, Frédéric Mesnard
    Non-Termination Inference of Logic Programs [Citation Graph (0, 0)][DBLP]
    CoRR, 2004, v:0, n:, pp:- [Journal]
  32. Frédéric Mesnard, Sébastien Hoarau, Alexandra Maillard
    CLP(chi) for Automatically Proving Program Properties. [Citation Graph (0, 0)][DBLP]
    J. Log. Program., 1998, v:37, n:1-3, pp:77-93 [Journal]
  33. Frédéric Mesnard, Salvatore Ruggieri
    On proving left termination of constraint logic programs. [Citation Graph (0, 0)][DBLP]
    ACM Trans. Comput. Log., 2003, v:4, n:2, pp:1-26 [Journal]
  34. Frédéric Mesnard, Salvatore Ruggieri
    On proving left termination of constraint logic programs. [Citation Graph (0, 0)][DBLP]
    ACM Trans. Comput. Log., 2003, v:4, n:2, pp:207-259 [Journal]
  35. Étienne Payet, Frédéric Mesnard
    Nontermination inference of logic programs. [Citation Graph (0, 0)][DBLP]
    ACM Trans. Program. Lang. Syst., 2006, v:28, n:2, pp:256-289 [Journal]
  36. Florence Benoy, Andy King, Frédéric Mesnard
    Computing convex hulls with a linear solver. [Citation Graph (0, 0)][DBLP]
    TPLP, 2005, v:5, n:1-2, pp:259-271 [Journal]
  37. Frédéric Mesnard, Roberto Bagnara
    cTI: A constraint-based termination inference tool for ISO-Prolog. [Citation Graph (0, 0)][DBLP]
    TPLP, 2005, v:5, n:1-2, pp:243-257 [Journal]
  38. Frédéric Mesnard, Alexander Serebrenik
    Recurrence with affine level mappings is P-time decidable for CLP(R) [Citation Graph (0, 0)][DBLP]
    CoRR, 2007, v:0, n:, pp:- [Journal]

  39. Typing Linear Constraints for Moding CLP() Programs. [Citation Graph (, )][DBLP]


  40. An Improved Non-Termination Criterion for Binary Constraint Logic Programs [Citation Graph (, )][DBLP]


  41. A Non-Termination Criterion for Binary Constraint Logic Programs [Citation Graph (, )][DBLP]


Search in 0.003secs, Finished in 0.005secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002