The SCEAS System
Navigation Menu

Search the dblp DataBase

Title:
Author:

Andreas Brandstädt: [Publications] [Author Rank by year] [Co-authors] [Prefers] [Cites] [Cited by]

Publications of Author

  1. Andreas Brandstädt, Victor Chepoi, Feodor F. Dragan
    Distance Approximating Trees for Chordal and Dually Chordal Graphs (Extended Abstract). [Citation Graph (0, 0)][DBLP]
    ESA, 1997, pp:78-91 [Conf]
  2. Hans L. Bodlaender, Andreas Brandstädt, Dieter Kratsch, Michaël Rao, Jeremy Spinrad
    Linear Time Algorithms for Some NP-Complete Problems on (P5, Gem)-Free Graphs. [Citation Graph (0, 0)][DBLP]
    FCT, 2003, pp:61-72 [Conf]
  3. Andreas Brandstädt
    On Robust Algorithms for the Maximum Weight Stable Set Problem. [Citation Graph (0, 0)][DBLP]
    FCT, 2001, pp:445-458 [Conf]
  4. Andreas Brandstädt, Joost Engelfriet, Hoàng-Oanh Le, Vadim V. Lozin
    Clique-Width for Four-Vertex Forbidden Subgraphs. [Citation Graph (0, 0)][DBLP]
    FCT, 2005, pp:185-196 [Conf]
  5. Andreas Brandstädt, Dieter Kratsch
    On the restriction of some NP-complete graph problems to permutation graphs. [Citation Graph (0, 0)][DBLP]
    FCT, 1985, pp:53-62 [Conf]
  6. Andreas Brandstädt, Van Bang Le, Suhail Mahfud
    New Applications of Clique Separator Decomposition for the Maximum Weight Stable Set Problem. [Citation Graph (0, 0)][DBLP]
    FCT, 2005, pp:516-527 [Conf]
  7. Andreas Brandstädt, Klaus W. Wagner
    Reversal-Bounded and Visit-Bounded Realtime Computations. [Citation Graph (0, 0)][DBLP]
    FCT, 1983, pp:26-39 [Conf]
  8. Andreas Brandstädt
    The Jump Number Problem for Biconvex Graphs and Rectangle Covers of Rectangular Regions. [Citation Graph (0, 0)][DBLP]
    FCT, 1989, pp:68-77 [Conf]
  9. Andreas Brandstädt, Chính T. Hoàng
    On Clique Separators, Nearly Chordal Graphs, and the Maximum Weight Stable Set Problem. [Citation Graph (0, 0)][DBLP]
    IPCO, 2005, pp:265-275 [Conf]
  10. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le
    Tree Spanners on Chordal Graphs: Complexity, Algorithms, Open Problems. [Citation Graph (0, 0)][DBLP]
    ISAAC, 2002, pp:163-174 [Conf]
  11. Andreas Brandstädt
    Pushdown Automata with Restricted Use of Storage Symbols. [Citation Graph (0, 0)][DBLP]
    MFCS, 1981, pp:234-241 [Conf]
  12. Feodor F. Dragan, Andreas Brandstädt
    Dominating Cliques in Graphs with Hypertree Structures. [Citation Graph (0, 0)][DBLP]
    STACS, 1994, pp:735-746 [Conf]
  13. Andreas Brandstädt, Feodor F. Dragan, Yang Xiang, Chenyu Yan
    Generalized Powers of Graphs and Their Algorithmic Use. [Citation Graph (0, 0)][DBLP]
    SWAT, 2006, pp:423-434 [Conf]
  14. Andreas Brandstädt, Van Bang Le
    Split-Perfect Graphs: Characterizations and Algorithmic Use. [Citation Graph (0, 0)][DBLP]
    WG, 2000, pp:71-82 [Conf]
  15. Andreas Brandstädt, Heinz-Jürgen Voss
    Short Disjoint Cycles in Graphs with Degree Constraints. [Citation Graph (0, 0)][DBLP]
    WG, 1993, pp:125-131 [Conf]
  16. Andreas Brandstädt
    Short Disjoint Cycles in Cubic Bridgeless Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 1991, pp:239-249 [Conf]
  17. Andreas Brandstädt
    On Improved Time Bounds for Permutation Graph Problems. [Citation Graph (0, 0)][DBLP]
    WG, 1992, pp:1-10 [Conf]
  18. Andreas Brandstädt, Feodor F. Dragan, Victor Chepoi, Vitaly I. Voloshin
    Dually Chordal Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 1993, pp:237-251 [Conf]
  19. Andreas Brandstädt, Victor Chepoi, Feodor F. Dragan
    The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings. [Citation Graph (0, 0)][DBLP]
    WG, 1994, pp:65-80 [Conf]
  20. Andreas Brandstädt, Feodor F. Dragan, Ekkehard Köhler
    Linear Time Algorithms for Hamiltonian Problems on (Claw, Net)-Free Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 1999, pp:364-376 [Conf]
  21. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le, Ryuhei Uehara
    Tree Spanners for Bipartite Graphs and Probe Interval Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 2003, pp:106-118 [Conf]
  22. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Raffaele Mosca
    New Graph Classes of Bounded Clique-Width. [Citation Graph (0, 0)][DBLP]
    WG, 2002, pp:57-67 [Conf]
  23. Andreas Brandstädt, Feodor F. Dragan, Falk Nicolai
    Homogeneously Orderable Graphs and the Steiner Tree Problem. [Citation Graph (0, 0)][DBLP]
    WG, 1995, pp:381-395 [Conf]
  24. Feodor F. Dragan, Falk Nicolai, Andreas Brandstädt
    LexBFS-Orderings and Power of Graphs. [Citation Graph (0, 0)][DBLP]
    WG, 1996, pp:166-180 [Conf]
  25. Andreas Brandstädt, Vadim V. Lozin
    On the linear structure and clique-width of bipartite permutation graphs. [Citation Graph (0, 0)][DBLP]
    Ars Comb., 2003, v:67, n:, pp:- [Journal]
  26. Luitpold Babel, Andreas Brandstädt, Van Bang Le
    Recognizing the P4-structure of Bipartite Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1999, v:93, n:2-3, pp:157-168 [Journal]
  27. Andreas Brandstädt
    (P5, diamond)-free graphs revisited: structure and linear time optimization. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2004, v:138, n:1-2, pp:13-27 [Journal]
  28. Andreas Brandstädt, Victor Chepoi, Feodor F. Dragan
    The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1998, v:82, n:1-3, pp:43-77 [Journal]
  29. Andreas Brandstädt, Feodor F. Dragan
    On linear and circular structure of (claw, net)-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:129, n:2-3, pp:285-303 [Journal]
  30. Andreas Brandstädt, Feodor F. Dragan, Van Bang Le, Thomas Szymczak
    On stable cutsets in graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2000, v:105, n:1-3, pp:39-50 [Journal]
  31. Andreas Brandstädt, Konrad Engel, Hans-Dietrich O. F. Gronau, Roger Labahn
    Preface: ODSA. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2004, v:138, n:1-2, pp:1- [Journal]
  32. Andreas Brandstädt, Peter L. Hammer
    On the Stability Number of Claw-free P5-free and More General Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1999, v:95, n:1-3, pp:163-167 [Journal]
  33. Andreas Brandstädt, Chính T. Hoàng, Van Bang Le
    Stability number of bull- and chair-free graphs revisited. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:131, n:1, pp:39-50 [Journal]
  34. Andreas Brandstädt, Dieter Kratsch
    On the structure of (P5, gem)-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2005, v:145, n:2, pp:155-166 [Journal]
  35. Andreas Brandstädt, Van Bang Le
    Recognizing the P4-structure of Block Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2000, v:99, n:1-3, pp:349-366 [Journal]
  36. Andreas Brandstädt, Vadim V. Lozin
    A note on alpha-redundant vertices in graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2001, v:108, n:3, pp:301-308 [Journal]
  37. Andreas Brandstädt, Van Bang Le
    Tree- and Forest-perfect Graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1999, v:95, n:1-3, pp:141-162 [Journal]
  38. Andreas Brandstädt, Hoàng-Oanh Le, Raffaele Mosca
    Chordal co-gem-free and (P5, gem)-free graphs have bounded clique-width. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2005, v:145, n:2, pp:232-241 [Journal]
  39. Andreas Brandstädt, Van Bang Le, Thomas Szymczak
    The Complexity of some Problems Related to Graph 3-colorability. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1998, v:89, n:1-3, pp:59-73 [Journal]
  40. Andreas Brandstädt, Raffaele Mosca
    On variations of P4-sparse graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:129, n:2-3, pp:521-532 [Journal]
  41. Andreas Brandstädt, Raffaele Mosca
    On the structure and stability number of P5- and co-chair-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 2003, v:132, n:1-3, pp:47-65 [Journal]
  42. Andreas Brandstädt, Heinz-Jürgen Voss
    Short Disjoint Cycles in Graphs with Degree Constraints. [Citation Graph (0, 0)][DBLP]
    Discrete Applied Mathematics, 1996, v:64, n:3, pp:197-205 [Journal]
  43. Andreas Brandstädt, Peter L. Hammer, Van Bang Le, Vadim V. Lozin
    Bisplit graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2005, v:299, n:1-3, pp:11-32 [Journal]
  44. Andreas Brandstädt, Chính T. Hoàng, Jean-Marie Vanherpe
    On minimal prime extensions of a four-vertex graph in a prime graph. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 2004, v:288, n:1-3, pp:9-17 [Journal]
  45. Luitpold Babel, Andreas Brandstädt, Van Bang Le
    Recognizing the P4-structure of claw-free graphs and a larger graph class. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics & Theoretical Computer Science, 2002, v:5, n:1, pp:127-146 [Journal]
  46. Andreas Brandstädt
    On a Family of Complexity Measures on Turing Machines, defined by Predicates. [Citation Graph (0, 0)][DBLP]
    Elektronische Informationsverarbeitung und Kybernetik, 1978, v:14, n:7/8, pp:331-339 [Journal]
  47. Andreas Brandstädt
    The Computational Complexity of Feedback Vertex Set, Hamiltonian Circuit, Dominating Set, Steiner Tree, and Bandwidth on Special Perfect Graphs. [Citation Graph (0, 0)][DBLP]
    Elektronische Informationsverarbeitung und Kybernetik, 1987, v:23, n:8/9, pp:471-477 [Journal]
  48. Andreas Brandstädt, Dieter Kratsch
    On Partitions of Permutations into Increasing and Decreasing Subsequences. [Citation Graph (0, 0)][DBLP]
    Elektronische Informationsverarbeitung und Kybernetik, 1986, v:22, n:5/6, pp:263-273 [Journal]
  49. Andreas Brandstädt, Dietrich Saalfeld
    Eine Hierarchie beschränkter Rückkehrberechnungen auf on-line Turingmaschinen. [Citation Graph (0, 0)][DBLP]
    Elektronische Informationsverarbeitung und Kybernetik, 1977, v:13, n:11, pp:571-583 [Journal]
  50. Andreas Brandstädt, Hoàng-Oanh Le, Raffaele Mosca
    Gem- And Co-Gem-Free Graphs Have Bounded Clique-Width. [Citation Graph (0, 0)][DBLP]
    Int. J. Found. Comput. Sci., 2004, v:15, n:1, pp:163-185 [Journal]
  51. Andreas Brandstädt, Van Bang Le
    Structure and linear time recognition of 3-leaf powers. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2006, v:98, n:4, pp:133-138 [Journal]
  52. Andreas Brandstädt, Hoàng-Oanh Le, Van Bang Le
    On alpha-redundant vertices in P5-free graphs. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2002, v:82, n:3, pp:119-122 [Journal]
  53. Andreas Brandstädt, Van Bang Le, H. N. de Ridder
    Efficient robust algorithms for the Maximum Weight Stable Set Problem in chair-free graph classes. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2004, v:89, n:4, pp:165-173 [Journal]
  54. Andreas Brandstädt, Hoàng-Oanh Le, Jean-Marie Vanherpe
    Structure and stability number of chair-, co-P- and gem-free graphs revisited. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2003, v:86, n:3, pp:161-167 [Journal]
  55. Andreas Brandstädt, Suhail Mahfud
    Maximum Weight Stable Set on graphs without claw and co-claw (and similar graph classes) can be solved in linear time. [Citation Graph (0, 0)][DBLP]
    Inf. Process. Lett., 2002, v:84, n:5, pp:251-259 [Journal]
  56. Andreas Brandstädt
    Closure Properties of Certain Families of Formal Languages with Respect to a Generalization of Cyclic Closure. [Citation Graph (0, 0)][DBLP]
    ITA, 1981, v:15, n:3, pp:233-252 [Journal]
  57. Andreas Brandstädt
    Space Classes, Intersection of Languages and Bounded Erasing Homomorphisms. [Citation Graph (0, 0)][DBLP]
    ITA, 1983, v:17, n:2, pp:121-130 [Journal]
  58. Andreas Brandstädt, Victor Chepoi, Feodor F. Dragan
    Distance Approximating Trees for Chordal and Dually Chordal Graphs. [Citation Graph (0, 0)][DBLP]
    J. Algorithms, 1999, v:30, n:1, pp:166-184 [Journal]
  59. Franz-Josef Brandenburg, Andreas Brandstädt, Klaus W. Wagner
    Uniform Simulations of Nondeterministic Real Time Multitape Turing Machines. [Citation Graph (0, 0)][DBLP]
    Mathematical Systems Theory, 1987, v:19, n:4, pp:277-299 [Journal]
  60. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Raffaele Mosca
    New Graph Classes of Bounded Clique-Width. [Citation Graph (0, 0)][DBLP]
    Theory Comput. Syst., 2005, v:38, n:5, pp:623-645 [Journal]
  61. Andreas Brandstädt, Joost Engelfriet, Hoàng-Oanh Le, Vadim V. Lozin
    Clique-Width for 4-Vertex Forbidden Subgraphs. [Citation Graph (0, 0)][DBLP]
    Theory Comput. Syst., 2006, v:39, n:4, pp:561-590 [Journal]
  62. Andreas Brandstädt, Feodor F. Dragan
    A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs. [Citation Graph (0, 0)][DBLP]
    Networks, 1998, v:31, n:3, pp:177-182 [Journal]
  63. Andreas Brandstädt, Feodor F. Dragan, Ekkehard Köhler
    Linear Time Algorithms for Hamiltonian Problems on (Claw, Net)-Free Graphs. [Citation Graph (0, 0)][DBLP]
    SIAM J. Comput., 2000, v:30, n:5, pp:1662-1677 [Journal]
  64. Andreas Brandstädt, Victor Chepoi, Feodor F. Dragan
    Clique r-Domination and Clique r-Packing Problems on Dually Chordal Graphs. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 1997, v:10, n:1, pp:109-127 [Journal]
  65. Andreas Brandstädt, Feodor F. Dragan, Victor Chepoi, Vitaly I. Voloshin
    Dually Chordal Graphs. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 1998, v:11, n:3, pp:437-455 [Journal]
  66. Andreas Brandstädt, Van Bang Le
    Split-Perfect Graphs: Characterizations and Algorithmic Use. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 2004, v:17, n:3, pp:341-360 [Journal]
  67. Feodor F. Dragan, Falk Nicolai, Andreas Brandstädt
    Convexity and HHD-Free Graphs. [Citation Graph (0, 0)][DBLP]
    SIAM J. Discrete Math., 1999, v:12, n:1, pp:119-135 [Journal]
  68. Hans L. Bodlaender, Andreas Brandstädt, Dieter Kratsch, Michaël Rao, Jeremy Spinrad
    On algorithms for (P5, gem)-free graphs. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2005, v:349, n:1, pp:2-21 [Journal]
  69. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le
    Tree spanners on chordal graphs: complexity and algorithms. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2004, v:310, n:1-3, pp:329-354 [Journal]
  70. Andreas Brandstädt, Feodor F. Dragan, Falk Nicolai
    Homogeneously Orderable Graphs. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 1997, v:172, n:1-2, pp:209-232 [Journal]
  71. Andreas Brandstädt, Dieter Kratsch
    On Domination Problems for Permutation and Other Graphs. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 1987, v:54, n:, pp:181-198 [Journal]
  72. Haiko Müller, Andreas Brandstädt
    The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 1987, v:53, n:, pp:257-265 [Journal]
  73. Gerd Wechsung, Andreas Brandstädt
    A Relation Between Space, Return and Dual Return Complexities. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 1979, v:9, n:, pp:127-140 [Journal]
  74. Andreas Brandstädt, Van Bang Le, Suhail Mahfud
    New applications of clique separator decomposition for the Maximum Weight Stable Set problem. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2007, v:370, n:1-3, pp:229-239 [Journal]
  75. Andreas Brandstädt, Peter Wagner
    On ( k , l)-Leaf Powers. [Citation Graph (0, 0)][DBLP]
    MFCS, 2007, pp:525-535 [Conf]
  76. Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, Van Bang Le, Ryuhei Uehara
    Tree Spanners for Bipartite Graphs and Probe Interval Graphs. [Citation Graph (0, 0)][DBLP]
    Algorithmica, 2007, v:47, n:1, pp:27-51 [Journal]
  77. Andreas Brandstädt
    Corrigendum. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1998, v:186, n:1-3, pp:295- [Journal]
  78. Andreas Brandstädt, Feodor F. Dragan, Falk Nicolai
    LexBFS-orderings and powers of chordal graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:171, n:1-3, pp:27-42 [Journal]
  79. Andreas Brandstädt, Van Bang Le, Thomas Szymczak
    Duchet-type theorems for powers of HHD-free graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1997, v:177, n:1-3, pp:9-16 [Journal]
  80. Feodor F. Dragan, Andreas Brandstädt
    r-Dominating cliques in graphs with hypertree structure. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1996, v:162, n:1-3, pp:93-108 [Journal]
  81. Andreas Brandstädt
    Partitions of graphs into one or two independent sets and cliques. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1996, v:152, n:1-3, pp:47-54 [Journal]
  82. Andreas Brandstädt, Victor Chepoi, Feodor F. Dragan
    Perfect elimination orderings of chordal powers of graphs. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics, 1996, v:158, n:1-3, pp:273-278 [Journal]
  83. Andreas Brandstädt, Tilo Klembt, Suhail Mahfud
    P6- and triangle-free graphs revisited: structure and bounded clique-width. [Citation Graph (0, 0)][DBLP]
    Discrete Mathematics & Theoretical Computer Science, 2006, v:8, n:1, pp:173-188 [Journal]
  84. Andreas Brandstädt, Elaine M. Eschen, R. Sritharan
    The induced matching and chain subgraph cover problems for convex bipartite graphs. [Citation Graph (0, 0)][DBLP]
    Theor. Comput. Sci., 2007, v:381, n:1-3, pp:260-265 [Journal]

  85. On Distance-3 Matchings and Induced Matchings. [Citation Graph (, )][DBLP]


  86. Path-Bicolorable Graphs. [Citation Graph (, )][DBLP]


  87. 07211 Abstracts Collection - Exact, Approximative, Robust and Certifying Algorithms on Particular Graph Classes. [Citation Graph (, )][DBLP]


  88. Independent Sets of Maximum Weight in Apple-Free Graphs. [Citation Graph (, )][DBLP]


  89. Ptolemaic Graphs and Interval Graphs Are Leaf Powers. [Citation Graph (, )][DBLP]


  90. Efficient Edge Domination on Hole-Free Graphs in Polynomial Time. [Citation Graph (, )][DBLP]


  91. Simplicial Powers of Graphs. [Citation Graph (, )][DBLP]


  92. On k-Versus (k+1)-Leaf Powers. [Citation Graph (, )][DBLP]


  93. Maximum Induced Matchings for Chordal Graphs in Linear Time. [Citation Graph (, )][DBLP]


  94. On Independent Vertex Sets in Subclasses of Apple-Free Graphs. [Citation Graph (, )][DBLP]


  95. Classes of bipartite graphs related to chordal graphs. [Citation Graph (, )][DBLP]


  96. Preface. [Citation Graph (, )][DBLP]


  97. Characterising (k, l)-leaf powers. [Citation Graph (, )][DBLP]


  98. A forbidden induced subgraph characterization of distance-hereditary 5-leaf powers. [Citation Graph (, )][DBLP]


  99. Rooted directed path graphs are leaf powers. [Citation Graph (, )][DBLP]


Search in 0.008secs, Finished in 0.014secs
NOTICE1
System may not be available sometimes or not working properly, since it is still in development with continuous upgrades
NOTICE2
The rankings that are presented on this page should NOT be considered as formal since the citation info is incomplete in DBLP
 
System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002
for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002