Search the dblp DataBase
Elizabeth J. Billington :
[Publications ]
[Author Rank by year ]
[Co-authors ]
[Prefers ]
[Cites ]
[Cited by ]
Publications of Author
Peter Adams , Elizabeth J. Billington Lambda-fold 3-perfect 9-cycle systems. [Citation Graph (0, 0)][DBLP ] Ars Comb., 1996, v:44, n:, pp:- [Journal ] Elizabeth J. Billington , Darryn E. Bryant The possible number of cycles in cycle systems. [Citation Graph (0, 0)][DBLP ] Ars Comb., 1999, v:52, n:, pp:- [Journal ] Elizabeth J. Billington , Gaetano Quattrocchi The metamorphosis of lambda-fold K3, 3-designs into lambda-fold 6-cycle systems. [Citation Graph (0, 0)][DBLP ] Ars Comb., 2002, v:64, n:, pp:65-0 [Journal ] Peter Adams , Elizabeth J. Billington , Darryn E. Bryant , Abdollah Khodkar The mu-way intersection problem for m-cycle systems. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2001, v:231, n:1-3, pp:27-56 [Journal ] Peter Adams , Elizabeth J. Billington , Darryn E. Bryant , Ebadollah S. Mahmoodian The three-way intersection problem for latin squares. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2002, v:243, n:1-3, pp:1-19 [Journal ] Peter Adams , Elizabeth J. Billington , Italo J. Dejter , Charles Curtis Lindner The number of 4-cycles in 2-factorizations of K 2n minus a 1-factor. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2000, v:220, n:1-3, pp:1-11 [Journal ] Elizabeth J. Billington The extended metamorphosis of a complete bipartite design into a cycle system. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2004, v:284, n:1-3, pp:63-70 [Journal ] Elizabeth J. Billington , Dean G. Hoffman Trade spectra of complete partite graphs. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2002, v:250, n:1-3, pp:23-39 [Journal ] Elizabeth J. Billington , Dean G. Hoffman Decomposition of complete tripartite graphs into gregarious 4-cycles. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2003, v:261, n:1-3, pp:87-111 [Journal ] Elizabeth J. Billington , Benjamin R. Smith , Dean G. Hoffman Equipartite gregarious 6- and 8-cycle systems. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 2007, v:307, n:13, pp:1659-1667 [Journal ] Peter Adams , Elizabeth J. Billington , Darryn E. Bryant , Saad El-Zanati On the Hamilton-Waterloo Problem. [Citation Graph (0, 0)][DBLP ] Graphs and Combinatorics, 2002, v:18, n:1, pp:31-51 [Journal ] Elizabeth J. Billington , Hung-Lin Fu , Christopher A. Rodger Packing lambda-Fold Complete Multipartite Graphs with 4-Cycles. [Citation Graph (0, 0)][DBLP ] Graphs and Combinatorics, 2005, v:21, n:2, pp:169-186 [Journal ] Elizabeth J. Billington , Dean G. Hoffman Trades and Graphs. [Citation Graph (0, 0)][DBLP ] Graphs and Combinatorics, 2001, v:17, n:1, pp:39-54 [Journal ] Elizabeth J. Billington More balanced ternary designs with block size three. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1982, v:39, n:1, pp:9-21 [Journal ] Elizabeth J. Billington New cyclic (61, 244, 40, 10, 6) BIBDs. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1989, v:77, n:1-3, pp:51-53 [Journal ] Elizabeth J. Billington Decomposing complete tripartite graphs into cycles of lengths 3 and 4. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1999, v:197, n:, pp:123-135 [Journal ] Elizabeth J. Billington , Dean G. Hoffman The intersection problem for star designs. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1998, v:179, n:1-3, pp:217-222 [Journal ] Elizabeth J. Billington , Dean G. Hoffman The number of repeated blocks in balanced ternary designs with block size three II. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1991, v:92, n:1-3, pp:25-37 [Journal ] Peter Adams , Elizabeth J. Billington , Darryn E. Bryant Partitionable perfect cycle systems with cycle lengths 6 and 8. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1996, v:149, n:1-3, pp:1-9 [Journal ] Elizabeth J. Billington , C. C. Lindner The spectrum for 2-perfect bowtie systems. [Citation Graph (0, 0)][DBLP ] Discrete Mathematics, 1994, v:135, n:1-3, pp:61-68 [Journal ] Equipartite and almost-equipartite gregarious 4-cycle systems. [Citation Graph (, )][DBLP ] Resolvable 4-cycle group divisible designs with two associate classes: Part size even. [Citation Graph (, )][DBLP ] Resolvable gregarious cycle decompositions of complete equipartite graphs. [Citation Graph (, )][DBLP ] Path and cycle decompositions of complete equipartite graphs: Four parts. [Citation Graph (, )][DBLP ] Embedding 5-cycle systems into pentagon triple systems. [Citation Graph (, )][DBLP ] Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts. [Citation Graph (, )][DBLP ] Search in 0.004secs, Finished in 0.005secs