The SCEAS System
| |||||||

## Search the dblp DataBase
Elizabeth J. Billington:
[Publications]
[Author Rank by year]
[Co-authors]
[Prefers]
[Cites]
[Cited by]
## Publications of Author- Peter Adams, Elizabeth J. Billington
**Lambda-fold 3-perfect 9-cycle systems.**[Citation Graph (0, 0)][DBLP] Ars Comb., 1996, v:44, n:, pp:- [Journal] - Elizabeth J. Billington, Darryn E. Bryant
**The possible number of cycles in cycle systems.**[Citation Graph (0, 0)][DBLP] Ars Comb., 1999, v:52, n:, pp:- [Journal] - Elizabeth J. Billington, Gaetano Quattrocchi
**The metamorphosis of lambda-fold K3, 3-designs into lambda-fold 6-cycle systems.**[Citation Graph (0, 0)][DBLP] Ars Comb., 2002, v:64, n:, pp:65-0 [Journal] - Peter Adams, Elizabeth J. Billington, Darryn E. Bryant, Abdollah Khodkar
**The mu-way intersection problem for m-cycle systems.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2001, v:231, n:1-3, pp:27-56 [Journal] - Peter Adams, Elizabeth J. Billington, Darryn E. Bryant, Ebadollah S. Mahmoodian
**The three-way intersection problem for latin squares.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2002, v:243, n:1-3, pp:1-19 [Journal] - Peter Adams, Elizabeth J. Billington, Italo J. Dejter, Charles Curtis Lindner
**The number of 4-cycles in 2-factorizations of**[Citation Graph (0, 0)][DBLP]*K*_{2n}minus a 1-factor. Discrete Mathematics, 2000, v:220, n:1-3, pp:1-11 [Journal] - Elizabeth J. Billington
**The extended metamorphosis of a complete bipartite design into a cycle system.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2004, v:284, n:1-3, pp:63-70 [Journal] - Elizabeth J. Billington, Dean G. Hoffman
**Trade spectra of complete partite graphs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2002, v:250, n:1-3, pp:23-39 [Journal] - Elizabeth J. Billington, Dean G. Hoffman
**Decomposition of complete tripartite graphs into gregarious 4-cycles.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2003, v:261, n:1-3, pp:87-111 [Journal] - Elizabeth J. Billington, Benjamin R. Smith, Dean G. Hoffman
**Equipartite gregarious 6- and 8-cycle systems.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 2007, v:307, n:13, pp:1659-1667 [Journal] - Peter Adams, Elizabeth J. Billington, Darryn E. Bryant, Saad El-Zanati
**On the Hamilton-Waterloo Problem.**[Citation Graph (0, 0)][DBLP] Graphs and Combinatorics, 2002, v:18, n:1, pp:31-51 [Journal] - Elizabeth J. Billington, Hung-Lin Fu, Christopher A. Rodger
**Packing lambda-Fold Complete Multipartite Graphs with 4-Cycles.**[Citation Graph (0, 0)][DBLP] Graphs and Combinatorics, 2005, v:21, n:2, pp:169-186 [Journal] - Elizabeth J. Billington, Dean G. Hoffman
**Trades and Graphs.**[Citation Graph (0, 0)][DBLP] Graphs and Combinatorics, 2001, v:17, n:1, pp:39-54 [Journal] - Elizabeth J. Billington
**More balanced ternary designs with block size three.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1982, v:39, n:1, pp:9-21 [Journal] - Elizabeth J. Billington
**New cyclic (61, 244, 40, 10, 6) BIBDs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1989, v:77, n:1-3, pp:51-53 [Journal] - Elizabeth J. Billington
**Decomposing complete tripartite graphs into cycles of lengths 3 and 4.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1999, v:197, n:, pp:123-135 [Journal] - Elizabeth J. Billington, Dean G. Hoffman
**The intersection problem for star designs.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1998, v:179, n:1-3, pp:217-222 [Journal] - Elizabeth J. Billington, Dean G. Hoffman
**The number of repeated blocks in balanced ternary designs with block size three II.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1991, v:92, n:1-3, pp:25-37 [Journal] - Peter Adams, Elizabeth J. Billington, Darryn E. Bryant
**Partitionable perfect cycle systems with cycle lengths 6 and 8.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1996, v:149, n:1-3, pp:1-9 [Journal] - Elizabeth J. Billington, C. C. Lindner
**The spectrum for 2-perfect bowtie systems.**[Citation Graph (0, 0)][DBLP] Discrete Mathematics, 1994, v:135, n:1-3, pp:61-68 [Journal] **Equipartite and almost-equipartite gregarious 4-cycle systems.**[Citation Graph (, )][DBLP]**Resolvable 4-cycle group divisible designs with two associate classes: Part size even.**[Citation Graph (, )][DBLP]**Resolvable gregarious cycle decompositions of complete equipartite graphs.**[Citation Graph (, )][DBLP]**Path and cycle decompositions of complete equipartite graphs: Four parts.**[Citation Graph (, )][DBLP]**Embedding 5-cycle systems into pentagon triple systems.**[Citation Graph (, )][DBLP]**Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts.**[Citation Graph (, )][DBLP]
Search in 0.004secs, Finished in 0.005secs | |||||||

| |||||||

| |||||||

System created by asidirop@csd.auth.gr [http://users.auth.gr/~asidirop/] © 2002 for Data Engineering Laboratory, Department of Informatics, Aristotle University © 2002 |